Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, California, United States of America.
Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California, United States of America.
PLoS Comput Biol. 2020 Apr 6;16(4):e1007756. doi: 10.1371/journal.pcbi.1007756. eCollection 2020 Apr.
Recent advances in electron microscopy have enabled the imaging of single cells in 3D at nanometer length scale resolutions. An uncharted frontier for in silico biology is the ability to simulate cellular processes using these observed geometries. Enabling such simulations requires watertight meshing of electron micrograph images into 3D volume meshes, which can then form the basis of computer simulations of such processes using numerical techniques such as the finite element method. In this paper, we describe the use of our recently rewritten mesh processing software, GAMer 2, to bridge the gap between poorly conditioned meshes generated from segmented micrographs and boundary marked tetrahedral meshes which are compatible with simulation. We demonstrate the application of a workflow using GAMer 2 to a series of electron micrographs of neuronal dendrite morphology explored at three different length scales and show that the resulting meshes are suitable for finite element simulations. This work is an important step towards making physical simulations of biological processes in realistic geometries routine. Innovations in algorithms to reconstruct and simulate cellular length scale phenomena based on emerging structural data will enable realistic physical models and advance discovery at the interface of geometry and cellular processes. We posit that a new frontier at the intersection of computational technologies and single cell biology is now open.
近年来,电子显微镜技术的进步使得能够以纳米级长度分辨率对单个细胞进行三维成像。计算生物学的一个未知领域是使用这些观察到的几何形状来模拟细胞过程的能力。要实现这种模拟,需要将电子显微镜图像无缝地网格化到三维体积网格中,然后可以使用数值技术(如有限元法)对这些过程进行计算机模拟。在本文中,我们描述了使用我们最近重写的网格处理软件 GAMer 2 来弥合从分割的显微镜图像生成的条件不良的网格与与模拟兼容的边界标记四面体网格之间的差距。我们展示了使用 GAMer 2 对一系列神经元树突形态的电子显微镜图像的工作流程的应用,这些图像在三个不同的长度尺度上进行了探索,并表明得到的网格适合有限元模拟。这项工作是朝着使真实几何形状下的生物过程物理模拟成为常规迈出的重要一步。基于新兴结构数据的重建和模拟细胞尺度现象的算法创新将能够实现现实的物理模型,并推动几何和细胞过程界面的发现。我们认为,计算技术和单细胞生物学交叉点的一个新前沿现在已经打开。