Suppr超能文献

基于特定任务信息和深度神经网络的用于检测跳频扩频信号的知识增强压缩测量

Knowledge-Enhanced Compressed Measurements for Detection of Frequency-Hopping Spread Spectrum Signals Based on Task-Specific Information and Deep Neural Networks.

作者信息

Liu Feng, Jiang Yinghai

机构信息

College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China.

Tianjin Key Laboratory of Optoelectronic Sensor and Sensing Network Technology, Nankai University, Tianjin 300350, China.

出版信息

Entropy (Basel). 2022 Dec 21;25(1):11. doi: 10.3390/e25010011.

Abstract

The frequency-hopping spread spectrum (FHSS) technique is widely used in secure communications. In this technique, the signal carrier frequency hops over a large band. The conventional non-compressed receiver must sample the signal at high rates to catch the entire frequency-hopping range, which is unfeasible for wide frequency-hopping ranges. In this paper, we propose an efficient adaptive compressed method to measure and detect the FHSS signals non-cooperatively. In contrast to the literature, the FHSS signal-detection method proposed in this paper is achieved directly with compressed sampling rates. The measurement kernels (the non-zero coefficients in the measurement matrix) are designed adaptively, using continuously updated knowledge from the compressed measurement. More importantly, in contrast to the iterative optimizations of the measurement matrices in the literature, the deep neural networks are trained once using task-specific information optimization and repeatedly implemented for measurement kernel design, enabling efficient adaptive detection of the FHSS signals. Simulations show that the proposed method provides stably low missing detection rates, compared to the compressed detection with random measurement kernels and the recently proposed method. Meanwhile, the measurement design in the proposed method is shown to provide improved efficiency, compared to the commonly used recursive method.

摘要

跳频扩频(FHSS)技术在安全通信中被广泛应用。在该技术中,信号载波频率在一个大频段上跳变。传统的非压缩接收机必须以高速率对信号进行采样,以捕捉整个跳频范围,而这对于宽跳频范围来说是不可行的。在本文中,我们提出了一种高效的自适应压缩方法,用于非协作地测量和检测FHSS信号。与文献不同的是,本文提出的FHSS信号检测方法直接通过压缩采样率来实现。测量核(测量矩阵中的非零系数)是自适应设计的,利用从压缩测量中不断更新的知识。更重要的是,与文献中测量矩阵的迭代优化不同,可以利用特定任务的信息优化对深度神经网络进行一次训练,并反复用于测量核设计,从而实现对FHSS信号的高效自适应检测。仿真表明,与使用随机测量核的压缩检测和最近提出的方法相比,该方法能稳定地提供低漏检率。同时,与常用的递归方法相比,该方法中的测量设计具有更高的效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b85/9857466/2f5a6c777573/entropy-25-00011-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验