Suppr超能文献

基于策略和主动选择标记集的自监督节点分类

Self-Supervised Node Classification with Strategy and Actively Selected Labeled Set.

作者信息

Kang Yi, Liu Ke, Cao Zhiyuan, Zhang Jiacai

机构信息

School of Artificial Intelligence, Beijing Normal University, No. 19 Xinjiekouwai Street, Haidian District, Beijing 100875, China.

出版信息

Entropy (Basel). 2022 Dec 23;25(1):30. doi: 10.3390/e25010030.

Abstract

To alleviate the impact of insufficient labels in less-labeled classification problems, self-supervised learning improves the performance of graph neural networks (GNNs) by focusing on the information of unlabeled nodes. However, none of the existing self-supervised pretext tasks perform optimally on different datasets, and the choice of hyperparameters is also included when combining self-supervised and supervised tasks. To select the best-performing self-supervised pretext task for each dataset and optimize the hyperparameters with no expert experience needed, we propose a novel auto graph self-supervised learning framework and enhance this framework with a one-shot active learning method. Experimental results on three real world citation datasets show that training GNNs with automatically optimized pretext tasks can achieve or even surpass the classification accuracy obtained with manually designed pretext tasks. On this basis, compared with using randomly selected labeled nodes, using actively selected labeled nodes can further improve the classification performance of GNNs. Both the active selection and the automatic optimization contribute to semi-supervised node classification.

摘要

为了减轻少标签分类问题中标签不足的影响,自监督学习通过关注未标记节点的信息来提高图神经网络(GNN)的性能。然而,现有的自监督预训练任务在不同数据集上均未达到最优性能,并且在结合自监督和监督任务时还涉及超参数的选择。为了为每个数据集选择性能最佳的自监督预训练任务并在无需专家经验的情况下优化超参数,我们提出了一种新颖的自动图自监督学习框架,并通过一次性主动学习方法对该框架进行了增强。在三个真实世界的引用数据集上的实验结果表明,使用自动优化的预训练任务训练GNN可以达到甚至超过使用手动设计的预训练任务所获得的分类准确率。在此基础上,与使用随机选择的标记节点相比,使用主动选择的标记节点可以进一步提高GNN的分类性能。主动选择和自动优化都有助于半监督节点分类。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4a38/9857737/0c329653c147/entropy-25-00030-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验