IEEE Trans Med Imaging. 2021 Oct;40(10):2845-2856. doi: 10.1109/TMI.2021.3056023. Epub 2021 Sep 30.
While high-resolution pathology images lend themselves well to 'data hungry' deep learning algorithms, obtaining exhaustive annotations on these images for learning is a major challenge. In this article, we propose a self-supervised convolutional neural network (CNN) framework to leverage unlabeled data for learning generalizable and domain invariant representations in pathology images. Our proposed framework, termed as Self-Path, employs multi-task learning where the main task is tissue classification and pretext tasks are a variety of self-supervised tasks with labels inherent to the input images. We introduce novel pathology-specific self-supervision tasks that leverage contextual, multi-resolution and semantic features in pathology images for semi-supervised learning and domain adaptation. We investigate the effectiveness of Self-Path on 3 different pathology datasets. Our results show that Self-Path with the pathology-specific pretext tasks achieves state-of-the-art performance for semi-supervised learning when small amounts of labeled data are available. Further, we show that Self-Path improves domain adaptation for histopathology image classification when there is no labeled data available for the target domain. This approach can potentially be employed for other applications in computational pathology, where annotation budget is often limited or large amount of unlabeled image data is available.
虽然高分辨率病理图像非常适合“数据密集型”深度学习算法,但为了学习,对这些图像进行详尽的注释是一个主要挑战。在本文中,我们提出了一种自监督卷积神经网络(CNN)框架,利用未标记的数据来学习病理学图像中的通用和领域不变表示。我们提出的称为 Self-Path 的框架采用多任务学习,主要任务是组织分类,而预设任务是各种具有输入图像固有标签的自监督任务。我们引入了新颖的病理学特定的自监督任务,利用病理学图像中的上下文、多分辨率和语义特征进行半监督学习和领域自适应。我们在 3 个不同的病理学数据集上研究了 Self-Path 的有效性。结果表明,当可用的标记数据较少时,具有病理学特定预设任务的 Self-Path 可以实现半监督学习的最新性能。此外,我们表明,当目标域没有可用的标记数据时,Self-Path 可以提高组织病理学图像分类的领域自适应能力。这种方法可以应用于计算病理学中的其他应用,在这些应用中,注释预算通常有限或有大量未标记的图像数据。