Suppr超能文献

为什么是形状编码?数字图像熵率的渐近分析。

Why Shape Coding? Asymptotic Analysis of the Entropy Rate for Digital Images.

作者信息

Xin Gangtao, Fan Pingyi, Letaief Khaled B

机构信息

Department of Electronic Engineering, Tsinghua University, Beijing 100084, China.

Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing 100084, China.

出版信息

Entropy (Basel). 2022 Dec 27;25(1):48. doi: 10.3390/e25010048.

Abstract

This paper focuses on the ultimate limit theory of image compression. It proves that for an image source, there exists a coding method with shapes that can achieve the entropy rate under a certain condition where the shape-pixel ratio in the encoder/decoder is O(1/logt). Based on the new finding, an image coding framework with shapes is proposed and proved to be asymptotically optimal for stationary and ergodic processes. Moreover, the condition O(1/logt) of shape-pixel ratio in the encoder/decoder has been confirmed in the image database MNIST, which illustrates the soft compression with shape coding is a near-optimal scheme for lossless compression of images.

摘要

本文聚焦于图像压缩的极限理论。证明了对于一个图像源,存在一种具有形状的编码方法,在编码器/解码器中形状与像素比为O(1/logt)的特定条件下能够达到熵率。基于这一新发现,提出了一种具有形状的图像编码框架,并证明其对于平稳遍历过程是渐近最优的。此外,在图像数据库MNIST中已证实了编码器/解码器中形状与像素比的O(1/logt)条件,这表明基于形状编码的软压缩是图像无损压缩的一种近似最优方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5fa2/9857653/121f229cabc6/entropy-25-00048-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验