Suppr超能文献

大数据下软压缩图像编码算法的健壮性、实用性和全面性分析。

Robust, practical and comprehensive analysis of soft compression image coding algorithms for big data.

机构信息

The Department of Electronic Engineering, Tsinghua University, Beijing, 100084, China.

The Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, 100084, China.

出版信息

Sci Rep. 2023 Feb 2;13(1):1958. doi: 10.1038/s41598-023-29068-z.

Abstract

With the advancement of intelligent vision algorithms and devices, image reprocessing and secondary propagation are becoming increasingly prevalent. A large number of similar images are being produced rapidly and widely, resulting in the homogeneity and similarity of images. Moreover, it brings new challenges to compression systems, which need to exploit the potential of deep features and side information of images. However, traditional methods are incompetent for this issue. Soft compression is a novel data-driven image coding algorithm with superior performance. Compared with existing paradigms, it has distinctive characteristics: from hard to soft, from pixels to shapes, and from fixed to random. Soft compression may hold promise for human-centric/data-centric intelligent systems, making them efficient and reliable and finding potential in the metaverse and digital twins, etc. In this paper, we present a comprehensive and practical analysis of soft compression, revealing the functional role of each component in the system.

摘要

随着智能视觉算法和设备的进步,图像的再处理和二次传播变得越来越普遍。大量相似的图像正在迅速广泛地生成,导致图像的同质性和相似性增加。此外,这给压缩系统带来了新的挑战,需要利用图像的深度特征和辅助信息的潜力。然而,传统方法对此问题无能为力。软压缩是一种新颖的数据驱动的图像编码算法,具有优异的性能。与现有范例相比,它具有独特的特点:从硬到软,从像素到形状,从固定到随机。软压缩可能对以人为中心/以数据为中心的智能系统有帮助,使它们高效可靠,并在元宇宙和数字孪生等领域中发现潜力。在本文中,我们对软压缩进行了全面而实用的分析,揭示了系统中每个组件的功能作用。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2c76/9895050/ef3f195aea57/41598_2023_29068_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验