Suppr超能文献

具有含时哈密顿量的(2)系统的不变参数化精确演化算符

Invariant-Parameterized Exact Evolution Operator for (2) Systems with Time-Dependent Hamiltonian.

作者信息

Nakazato Hiromichi, Sergi Alessandro, Migliore Agostino, Messina Antonino

机构信息

Department of Physics, Waseda University, Tokyo 169-8555, Japan.

Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy.

出版信息

Entropy (Basel). 2023 Jan 3;25(1):96. doi: 10.3390/e25010096.

Abstract

We report the step-by-step construction of the exact, closed and explicit expression for the evolution operator U(t) of a localized and isolated qubit in an arbitrary time-dependent field, which for concreteness we assume to be a magnetic field. Our approach is based on the existence of two independent dynamical invariants that enter the expression of SU(2) by means of two strictly related time-dependent, real or complex, parameters. The usefulness of our approach is demonstrated by exactly solving the quantum dynamics of a qubit subject to a controllable time-dependent field that can be realized in the laboratory. We further discuss possible applications to any SU(2) model, as well as the applicability of our method to realistic physical scenarios with different symmetry properties.

摘要

我们报告了在任意随时间变化的场中,一个局域且孤立的量子比特的演化算符U(t)的精确、封闭且显式表达式的逐步构建过程,为具体起见,我们假定该场为磁场。我们的方法基于两个独立动力学不变量的存在,它们通过两个严格相关的随时间变化的实参数或复参数进入SU(2)的表达式。通过精确求解一个处于可控随时间变化场中的量子比特的量子动力学(该场可在实验室中实现),证明了我们方法的实用性。我们进一步讨论了其在任何SU(2)模型中的可能应用,以及我们的方法在具有不同对称性质的现实物理场景中的适用性。

相似文献

2
Exact two-qubit universal quantum circuit.精确的两量子比特通用量子电路。
Phys Rev Lett. 2003 Jul 11;91(2):027903. doi: 10.1103/PhysRevLett.91.027903.
4
Invariants for time-dependent Hamiltonian systems.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Aug;64(2 Pt 2):026503. doi: 10.1103/PhysRevE.64.026503. Epub 2001 Jul 17.
5
Quantum control by means of hamiltonian structure manipulation.通过哈密顿结构操纵进行量子控制。
Phys Chem Chem Phys. 2011 Apr 28;13(16):7348-62. doi: 10.1039/c0cp02234a. Epub 2011 Mar 22.
10
Global invariants for variable-mass systems.变质量系统的全局不变量。
Phys Rev Lett. 2006 Oct 20;97(16):164302. doi: 10.1103/PhysRevLett.97.164302. Epub 2006 Oct 19.

本文引用的文献

2
Defining the Semiclassical Limit of the Quantum Rabi Hamiltonian.定义量子拉比哈密顿量的半经典极限。
Phys Rev Lett. 2022 Oct 28;129(18):183603. doi: 10.1103/PhysRevLett.129.183603.
3
Non-adiabatic quantum control of quantum dot arrays with fixed exchange using Cartan decomposition.
Philos Trans A Math Phys Eng Sci. 2022 Dec 26;380(2239):20210275. doi: 10.1098/rsta.2021.0275. Epub 2022 Nov 7.
4
Invariant Quantum States of Quadratic Hamiltonians.二次哈密顿量的不变量子态
Entropy (Basel). 2021 May 19;23(5):634. doi: 10.3390/e23050634.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验