Grimaudo Roberto, Messina Antonino, Sergi Alessandro, Vitanov Nikolay V, Filippov Sergey N
Dipartimento di Fisica e Chimica dell'Università di Palermo, Via Archirafi 36, I-90123 Palermo, Italy.
Dipartimento di Matematica ed Informatica dell'Università di Palermo, Via Archirafi 34, I-90123 Palermo, Italy.
Entropy (Basel). 2020 Oct 20;22(10):1184. doi: 10.3390/e22101184.
In contrast to classical systems, actual implementation of non-Hermitian Hamiltonian dynamics for quantum systems is a challenge because the processes of energy gain and dissipation are based on the underlying Hermitian system-environment dynamics, which are trace preserving. Recently, a scheme for engineering non-Hermitian Hamiltonians as a result of repetitive measurements on an ancillary qubit has been proposed. The induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian arising from the procedure. In this paper, we demonstrate the effectiveness of such a protocol by applying it to physically relevant multi-spin models, showing that the effective non-Hermitian Hamiltonian drives the system to a maximally entangled stationary state. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian model may be simulated. The physical implications and the broad scope potential applications of such a scheme are highlighted.
与经典系统不同,量子系统中非厄米哈密顿动力学的实际实现是一项挑战,因为能量增益和耗散过程基于潜在的厄米系统 - 环境动力学,而这种动力学是迹保持的。最近,有人提出了一种通过对辅助量子比特进行重复测量来构建非厄米哈密顿量的方案。主要系统的诱导条件动力学由该过程产生的有效非厄米哈密顿量描述。在本文中,我们通过将该协议应用于物理相关的多自旋模型来证明其有效性,表明有效非厄米哈密顿量将系统驱动到最大纠缠稳态。此外,我们报告了一种新方法,用于构建一个物理场景,在其中可以模拟由给定非厄米哈密顿量模型表示的物理系统的量子动力学。强调了这种方案的物理意义和广泛的潜在应用范围。