Department of Genetics, Health Research Institute-Fundación Jiménez Díaz University Hospital, Universidad Autónoma de Madrid (IIS-FJD, UAM), 28049 Madrid, Spain.
Center for Biomedical Network Research on Rare Diseases (CIBERER), Instituto de Salud Carlos III (ISCIII), 28040 Madrid, Spain.
Int J Mol Sci. 2023 Jan 14;24(2):1661. doi: 10.3390/ijms24021661.
Screening for pathogenic variants in the diagnosis of rare genetic diseases can now be performed on all genes thanks to the application of whole exome and genome sequencing (WES, WGS). Yet the repertoire of gene-disease associations is not complete. Several computer-based algorithms and databases integrate distinct gene-gene functional networks to accelerate the discovery of gene-disease associations. We hypothesize that the ability of every type of information to extract relevant insights is disease-dependent. We compiled 33 functional networks classified into 13 knowledge categories (KCs) and observed large variability in their ability to recover genes associated with 91 genetic diseases, as measured using efficiency and exclusivity. We developed GLOWgenes, a network-based algorithm that applies random walk with restart to evaluate KCs' ability to recover genes from a given list associated with a phenotype and modulates the prediction of new candidates accordingly. Comparison with other integration strategies and tools shows that our disease-aware approach can boost the discovery of new gene-disease associations, especially for the less obvious ones. KC contribution also varies if obtained using recently discovered genes. Applied to 15 unsolved WES, GLOWgenes proposed three new genes to be involved in the phenotypes of patients with syndromic inherited retinal dystrophies.
由于全外显子组和全基因组测序 (WES、WGS) 的应用,现在可以对所有基因进行致病变异筛查,以诊断罕见的遗传疾病。然而,基因-疾病关联的目录并不完整。几种基于计算机的算法和数据库整合了不同的基因-基因功能网络,以加速基因-疾病关联的发现。我们假设每种类型的信息提取相关见解的能力取决于疾病。我们编译了 33 种功能网络,分为 13 个知识类别 (KC),并观察到它们在从给定的与表型相关的基因列表中恢复与 91 种遗传疾病相关的基因方面的能力存在很大差异,这是通过效率和排他性来衡量的。我们开发了 GLOWgenes,这是一种基于网络的算法,它应用带有重启的随机游走来评估 KC 从给定的与表型相关的基因列表中恢复基因的能力,并相应地调节对新候选基因的预测。与其他整合策略和工具的比较表明,我们的疾病感知方法可以促进新的基因-疾病关联的发现,特别是对于那些不太明显的关联。如果使用最近发现的基因获得 KC 贡献也会有所不同。将 GLOWgenes 应用于 15 个未解决的 WES 中,提出了三个新基因可能与综合征性遗传性视网膜营养不良患者的表型有关。