Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
Universitat Pompeu Fabra (UPF), Barcelona, Spain.
Hum Mutat. 2019 Jul;40(7):865-878. doi: 10.1002/humu.23772. Epub 2019 May 21.
Mendelian diseases have shown to be an and efficient model for connecting genotypes to phenotypes and for elucidating the function of genes. Whole-exome sequencing (WES) accelerated the study of rare Mendelian diseases in families, allowing for directly pinpointing rare causal mutations in genic regions without the need for linkage analysis. However, the low diagnostic rates of 20-30% reported for multiple WES disease studies point to the need for improved variant pathogenicity classification and causal variant prioritization methods. Here, we present the exome Disease Variant Analysis (eDiVA; http://ediva.crg.eu), an automated computational framework for identification of causal genetic variants (coding/splicing single-nucleotide variants and small insertions and deletions) for rare diseases using WES of families or parent-child trios. eDiVA combines next-generation sequencing data analysis, comprehensive functional annotation, and causal variant prioritization optimized for familial genetic disease studies. eDiVA features a machine learning-based variant pathogenicity predictor combining various genomic and evolutionary signatures. Clinical information, such as disease phenotype or mode of inheritance, is incorporated to improve the precision of the prioritization algorithm. Benchmarking against state-of-the-art competitors demonstrates that eDiVA consistently performed as a good or better than existing approach in terms of detection rate and precision. Moreover, we applied eDiVA to several familial disease cases to demonstrate its clinical applicability.
孟德尔氏疾病已被证明是一种有效的模式,可将基因型与表型联系起来,并阐明基因的功能。全外显子组测序 (WES) 加速了对家族中罕见孟德尔氏疾病的研究,使得无需进行连锁分析即可直接精确定位基因区域中的罕见因果突变。然而,多个 WES 疾病研究报告的 20-30%的低诊断率表明需要改进变异致病性分类和因果变异优先级排序方法。在这里,我们提出了外显子疾病变异分析 (eDiVA; http://ediva.crg.eu),这是一种自动化的计算框架,用于使用家族或父母-子女三核苷酸的 WES 识别罕见疾病的因果遗传变异 (编码/剪接单核苷酸变异和小插入/缺失)。eDiVA 结合了下一代测序数据分析、全面的功能注释以及针对家族遗传疾病研究优化的因果变异优先级排序。eDiVA 具有基于机器学习的变异致病性预测器,结合了各种基因组和进化特征。将临床信息(如疾病表型或遗传方式)纳入其中,可提高优先级排序算法的准确性。与最先进的竞争对手进行基准测试表明,eDiVA 在检测率和精度方面始终表现得与现有方法一样好或更好。此外,我们将 eDiVA 应用于几个家族性疾病病例,以证明其临床适用性。