Suppr超能文献

走向分子通信中的跨学科协同:来自合成生物学、纳米技术、通信工程和科学哲学的视角

Toward Interdisciplinary Synergies in Molecular Communications: Perspectives from Synthetic Biology, Nanotechnology, Communications Engineering and Philosophy of Science.

作者信息

Egan Malcolm, Kuscu Murat, Barros Michael Taynnan, Booth Michael, Llopis-Lorente Antoni, Magarini Maurizio, Martins Daniel P, Schäfer Maximilian, Stano Pasquale

机构信息

Univ Lyon, INSA Lyon, INRIA, CITI, 69621 Villeurbanne, France.

Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey.

出版信息

Life (Basel). 2023 Jan 11;13(1):208. doi: 10.3390/life13010208.

Abstract

Within many chemical and biological systems, both synthetic and natural, communication via chemical messengers is widely viewed as a key feature. Often known as such communication has been a concern in the fields of synthetic biologists, nanotechnologists, communications engineers, and philosophers of science. However, interactions between these fields are currently limited. Nevertheless, the fact that the same basic phenomenon is studied by all of these fields raises the question of whether there are unexploited interdisciplinary synergies. In this paper, we summarize the perspectives of each field on molecular communications, highlight potential synergies, discuss ongoing challenges to exploit these synergies, and present future perspectives for interdisciplinary efforts in this area.

摘要

在许多化学和生物系统中,无论是合成的还是天然的,通过化学信使进行通信都被广泛视为一个关键特征。这种通信通常被称为分子通信,一直是合成生物学家、纳米技术专家、通信工程师和科学哲学家等领域关注的问题。然而,目前这些领域之间的相互作用有限。尽管如此,所有这些领域都在研究相同的基本现象,这就提出了一个问题,即是否存在尚未开发的跨学科协同效应。在本文中,我们总结了各个领域对分子通信的观点,强调了潜在的协同效应,讨论了利用这些协同效应所面临的持续挑战,并提出了该领域跨学科研究的未来展望。

相似文献

2
Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
Phys Biol. 2013 Aug;10(4):040301. doi: 10.1088/1478-3975/10/4/040301. Epub 2013 Aug 2.
3
Varieties of noise: analogical reasoning in synthetic biology.
Stud Hist Philos Sci. 2014 Dec;48:76-88. doi: 10.1016/j.shpsa.2014.05.006.
4
Models of Chemical Communication for Micro/Nanoparticles.
Acc Chem Res. 2024 Mar 19;57(6):815-830. doi: 10.1021/acs.accounts.3c00619. Epub 2024 Mar 1.
5
Designing synthetic biology.
ACS Synth Biol. 2014 Mar 21;3(3):121-8. doi: 10.1021/sb4001068. Epub 2013 Nov 12.
6
Calculating life? Duelling discourses in interdisciplinary systems biology.
Stud Hist Philos Biol Biomed Sci. 2011 Jun;42(2):155-63. doi: 10.1016/j.shpsc.2010.11.022. Epub 2011 Feb 5.
7
Engineering chemical communication between micro/nanosystems.
Chem Soc Rev. 2021 Aug 21;50(16):8829-8856. doi: 10.1039/d0cs01048k. Epub 2021 Jun 10.
8
Coacervate Microdroplets as Synthetic Protocells for Cell Mimicking and Signaling Communications.
Small Methods. 2023 Dec;7(12):e2300042. doi: 10.1002/smtd.202300042. Epub 2023 Mar 12.
9
The borderlands between science and philosophy: an introduction.
Q Rev Biol. 2008 Mar;83(1):7-15. doi: 10.1086/529558.
10
Molecular Communications in Viral Infections Research: Modeling, Experimental Data, and Future Directions.
IEEE Trans Mol Biol Multiscale Commun. 2021 Apr 15;7(3):121-141. doi: 10.1109/TMBMC.2021.3071780. eCollection 2021 Sep.

引用本文的文献

2
modelling of neuron signal impact of cytokine storm-induced demyelination.
Open Biol. 2024 Sep;14(9):240138. doi: 10.1098/rsob.240138. Epub 2024 Sep 4.
3
Models of Chemical Communication for Micro/Nanoparticles.
Acc Chem Res. 2024 Mar 19;57(6):815-830. doi: 10.1021/acs.accounts.3c00619. Epub 2024 Mar 1.
4
5
Chemical Systems for Wetware Artificial Life: Selected Perspectives in Synthetic Cell Research.
Int J Mol Sci. 2023 Sep 15;24(18):14138. doi: 10.3390/ijms241814138.
6
A Role for Bottom-Up Synthetic Cells in the Internet of Bio-Nano Things?
Molecules. 2023 Jul 21;28(14):5564. doi: 10.3390/molecules28145564.

本文引用的文献

1
USE OF ARTIFICIAL CELLS AS DRUG CARRIERS.
Mater Chem Front. 2021 Sep 21;5(18):6672-6692. doi: 10.1039/d1qm00717c. Epub 2021 Jul 16.
2
Chemical communication at the synthetic cell/living cell interface.
Commun Chem. 2021 Nov 25;4(1):161. doi: 10.1038/s42004-021-00597-w.
3
Engineering a Rhodopsin-Based Photo-Electrosynthetic System in Bacteria for CO Fixation.
ACS Synth Biol. 2022 Nov 18;11(11):3805-3816. doi: 10.1021/acssynbio.2c00397. Epub 2022 Oct 20.
4
Enzyme-powered micro- and nano-motors: key parameters for an application-oriented design.
Chem Sci. 2022 Jul 21;13(32):9128-9146. doi: 10.1039/d2sc01806c. eCollection 2022 Aug 17.
5
Chemical Communication in Artificial Cells: Basic Concepts, Design and Challenges.
Front Mol Biosci. 2022 May 26;9:880525. doi: 10.3389/fmolb.2022.880525. eCollection 2022.
6
Nanoprogrammed Cross-Kingdom Communication Between Living Microorganisms.
Nano Lett. 2022 Mar 9;22(5):1836-1844. doi: 10.1021/acs.nanolett.1c02435. Epub 2022 Feb 16.
7
Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems.
Angew Chem Int Ed Engl. 2022 Apr 11;61(16):e202110855. doi: 10.1002/anie.202110855. Epub 2022 Mar 30.
8
Synthetic cells in biomedical applications.
Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2022 Mar;14(2):e1761. doi: 10.1002/wnan.1761. Epub 2021 Nov 1.
9
Toward synthetic life: Biomimetic synthetic cell communication.
Curr Opin Chem Biol. 2021 Oct;64:165-173. doi: 10.1016/j.cbpa.2021.08.008. Epub 2021 Sep 28.
10
A chemical circular communication network at the nanoscale.
Chem Sci. 2020 Dec 9;12(4):1551-1559. doi: 10.1039/d0sc04743k.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验