Evershed R P, Male V L, Goad L J
Department of Biochemistry, University of Liverpool, U.K.
J Chromatogr. 1987 Jul 29;400:187-205. doi: 10.1016/s0021-9673(01)81612-5.
Methods are described for the analysis of intact steryl esters present in complex mixtures isolated from plant or animal tissues. A preliminary examination by analytical thin-layer chromatography (TLC) and capillary column gas chromatography-mass spectrometry (GC-MS) under electron impact (EI) ionisation reveals the complexity of the mixture and the nature of the steryl moieties. Preparative TLC is then utilised to separate the steryl esters into two broad groups, containing fatty acyl moieties of shorter (C2-C8) or longer chain length (C10-C22). The shorter-chain fatty acyl steryl esters are separated by adsorption high-performance liquid chromatography (HPLC) on a LiChrosorb Silica-60 column. The steryl esters with longer-chain fatty acyl moieties are analysed by reversed-phase HPLC on either an Ultrasphere ODS, 5-micron, or a S3 Spherisorb ODS, 3-micron, column. Steryl esters with unsaturated fatty acyl moieties are eluted with the shorter-chain fatty acyl steryl esters. The presence of the unsaturated fatty acyl esters can be monitored by analytical argentation TLC, which will also reveal the degree of unsaturation. The steryl esters are fractionated into the saturated, mono-, di-, tri- and polyene acyl types by preparative medium-pressure liquid chromatography on a column of 10% AgNO3-silica gel. Each of these steryl ester types can then be resubmitted to reversed-phase HPLC or analysed by GC-MS on a short fused-silica capillary column with a bonded phase of the OV-1 type. GC-MS on a magnetic-sector instrument under negative-ion chemical ionisation conditions with ammonia as the reagent gas produces fragment ions for both the steryl and fatty acyl moieties, thus permitting identification of the individual intact steryl esters. These various methods are illustrated by analyses of the steryl ester mixtures obtained from human plasma, barley seedlings, palm oil and rape seed oil.
本文描述了对从植物或动物组织中分离出的复杂混合物中存在的完整甾醇酯进行分析的方法。通过分析薄层色谱(TLC)和电子轰击(EI)电离下的毛细管柱气相色谱-质谱联用(GC-MS)进行初步检查,揭示了混合物的复杂性以及甾醇部分的性质。然后利用制备型TLC将甾醇酯分离成两大类,分别含有较短链(C2-C8)或较长链长度(C10-C22)的脂肪酰基部分。短链脂肪酰基甾醇酯通过在LiChrosorb Silica-60柱上的吸附高效液相色谱(HPLC)进行分离。具有较长链脂肪酰基部分的甾醇酯通过在Ultrasphere ODS(5微米)或S3 Spherisorb ODS(3微米)柱上的反相HPLC进行分析。具有不饱和脂肪酰基部分的甾醇酯与短链脂肪酰基甾醇酯一起洗脱。不饱和脂肪酰基酯的存在可以通过分析型银化TLC进行监测,这也将揭示不饱和度。通过在10% AgNO3-硅胶柱上的制备型中压液相色谱,将甾醇酯分离成饱和、单烯、二烯、三烯和多烯酰基类型。然后,这些甾醇酯类型中的每一种都可以重新进行反相HPLC分析,或在具有OV-1型键合相的短熔融石英毛细管柱上通过GC-MS进行分析。在磁扇形仪器上,以氨作为反应气,在负离子化学电离条件下进行GC-MS,可产生甾醇和脂肪酰基部分的碎片离子,从而允许鉴定单个完整的甾醇酯。通过对从人血浆、大麦幼苗、棕榈油和菜籽油中获得的甾醇酯混合物的分析,对这些不同的方法进行了说明。