Suppr超能文献

与等离子体金属纳米颗粒形成的共价配合物中碳点的发射增强

Carbon Dot Emission Enhancement in Covalent Complexes with Plasmonic Metal Nanoparticles.

作者信息

Arefina Irina A, Kurshanov Danil A, Vedernikova Anna A, Danilov Denis V, Koroleva Aleksandra V, Zhizhin Evgeniy V, Sergeev Aleksandr A, Fedorov Anatoly V, Ushakova Elena V, Rogach Andrey L

机构信息

International Research and Education Centre for Physics of Nanostructures, ITMO University, Saint Petersburg 197101, Russia.

Interdisciplinary Resource Centre for Nanotechnology, Saint Petersburg State University, Saint Petersburg 199034, Russia.

出版信息

Nanomaterials (Basel). 2023 Jan 4;13(2):223. doi: 10.3390/nano13020223.

Abstract

Carbon dots can be used for the fabrication of colloidal multi-purpose complexes for sensing and bio-visualization due to their easy and scalable synthesis, control of their spectral responses over a wide spectral range, and possibility of surface functionalization to meet the application task. Here, we developed a chemical protocol of colloidal complex formation via covalent bonding between carbon dots and plasmonic metal nanoparticles in order to influence and improve their fluorescence. We demonstrate how interactions between carbon dots and metal nanoparticles in the formed complexes, and thus their optical responses, depend on the type of bonds between particles, the architecture of the complexes, and the degree of overlapping of absorption and emission of carbon dots with the plasmon resonance of metals. For the most optimized architecture, emission enhancement reaching up to 5.4- and 4.9-fold for complexes with silver and gold nanoparticles has been achieved, respectively. Our study expands the toolkit of functional materials based on carbon dots for applications in photonics and biomedicine to photonics.

摘要

碳点因其易于合成且可扩展、能在宽光谱范围内控制光谱响应以及可进行表面功能化以满足应用任务等特点,可用于制备用于传感和生物可视化的胶体多功能复合物。在此,我们开发了一种通过碳点与等离子体金属纳米粒子之间的共价键形成胶体复合物的化学方法,以影响和改善其荧光。我们展示了所形成复合物中碳点与金属纳米粒子之间的相互作用,以及由此产生的光学响应,如何取决于粒子间键的类型、复合物的结构以及碳点的吸收和发射与金属等离子体共振的重叠程度。对于最优化的结构,与银纳米粒子和金纳米粒子形成的复合物的发射增强分别达到了5.4倍和4.9倍。我们的研究扩展了基于碳点的功能材料在光子学和生物医学至光子学应用中的工具集。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/30ac/9867019/ff03d348eeca/nanomaterials-13-00223-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验