Suppr超能文献

基于系统调用的物联网异常检测的有效方法。

Efficient Approach for Anomaly Detection in IoT Using System Calls.

机构信息

Department of Computer Science, National University of Computer and Emerging Sciences, Islamabad 44000, Pakistan.

School of Architecture, Technology and Engineering, The University of Brighton, Brighton BN2 4GJ, UK.

出版信息

Sensors (Basel). 2023 Jan 6;23(2):652. doi: 10.3390/s23020652.

Abstract

The Internet of Things (IoT) has shown rapid growth and wide adoption in recent years. However, IoT devices are not designed to address modern security challenges. The weak security of these devices has been exploited by malicious actors and has led to several serious cyber-attacks. In this context, anomaly detection approaches are considered very effective owing to their ability to detect existing and novel attacks while requiring data only from normal execution. Because of the limited resources of IoT devices, conventional security solutions are not feasible. This emphasizes the need to develop new approaches that are specifically tailored to IoT devices. In this study, we propose a host-based anomaly detection approach that uses system call data and a Markov chain to represent normal behavior. This approach addresses the challenges that existing approaches face in this area, mainly the segmentation of the syscall trace into suitable smaller units and the use of a fixed threshold to differentiate between normal and malicious syscall sequences. Our proposed approach provides a mechanism for segmenting syscall traces into the program's execution paths and dynamically determines the threshold for anomaly detection. The proposed approach was evaluated against various attacks using two well-known public datasets provided by the University of New South Mexico (UNM) and one custom dataset (PiData) developed in the laboratory. We also compared the performance and characteristics of our proposed approach with those of recently published related work. The proposed approach has a very low false positive rate (0.86%), high accuracy (100%), and a high F1 score (100%) that is, a combined performance measure of precision and recall.

摘要

物联网 (IoT) 在近年来得到了快速发展和广泛应用。然而,物联网设备的设计并未考虑到现代安全挑战。这些设备的安全性较弱,已被恶意行为者利用,并导致了多次严重的网络攻击。在这种情况下,异常检测方法被认为非常有效,因为它们能够在仅使用正常执行数据的情况下检测到现有和新型攻击。由于物联网设备的资源有限,传统的安全解决方案是不可行的。这就强调了需要开发专门针对物联网设备的新方法。在本研究中,我们提出了一种基于主机的异常检测方法,该方法使用系统调用数据和马尔可夫链来表示正常行为。该方法解决了现有方法在该领域面临的挑战,主要是将系统调用跟踪分割成合适的较小单元,以及使用固定阈值来区分正常和恶意系统调用序列。我们提出的方法提供了一种将系统调用跟踪分割为程序执行路径的机制,并动态确定异常检测的阈值。该方法使用新南威尔士大学 (UNM) 提供的两个著名的公共数据集和一个实验室开发的自定义数据集 (PiData) 对各种攻击进行了评估。我们还将我们提出的方法的性能和特征与最近发表的相关工作进行了比较。我们提出的方法的误报率非常低(0.86%),准确率为 100%,F1 得分为 100%,即精确率和召回率的综合性能指标。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d149/9861298/944e55351847/sensors-23-00652-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验