Suppr超能文献

增强自由生活状态下跌倒风险评估:基于惯性测量单元数据的情境化移动性分析。

Enhancing Free-Living Fall Risk Assessment: Contextualizing Mobility Based IMU Data.

机构信息

Department of Computer and Information Sciences, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.

Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle upon Tyne NE1 8ST, UK.

出版信息

Sensors (Basel). 2023 Jan 12;23(2):891. doi: 10.3390/s23020891.

Abstract

Fall risk assessment needs contemporary approaches based on habitual data. Currently, inertial measurement unit (IMU)-based wearables are used to inform free-living spatio-temporal gait characteristics to inform mobility assessment. Typically, a fluctuation of those characteristics will infer an increased fall risk. However, current approaches with IMUs alone remain limited, as there are no contextual data to comprehensively determine if underlying mechanistic (intrinsic) or environmental (extrinsic) factors impact mobility and, therefore, fall risk. Here, a case study is used to explore and discuss how contemporary video-based wearables could be used to supplement arising mobility-based IMU gait data to better inform habitual fall risk assessment. A single stroke survivor was recruited, and he conducted a series of mobility tasks in a lab and beyond while wearing video-based glasses and a single IMU. The latter generated topical gait characteristics that were discussed according to current research practices. Although current IMU-based approaches are beginning to provide habitual data, they remain limited. Given the plethora of extrinsic factors that may influence mobility-based gait, there is a need to corroborate IMUs with video data to comprehensively inform fall risk assessment. Use of artificial intelligence (AI)-based computer vision approaches could drastically aid the processing of video data in a timely and ethical manner. Many off-the-shelf AI tools exist to aid this current need and provide a means to automate contextual analysis to better inform mobility from IMU gait data for an individualized and contemporary approach to habitual fall risk assessment.

摘要

跌倒风险评估需要基于习惯数据的现代方法。目前,基于惯性测量单元(IMU)的可穿戴设备用于告知自由生活的时空步态特征,以告知移动能力评估。通常,这些特征的波动将推断出跌倒风险增加。然而,目前仅使用 IMU 的方法仍然有限,因为没有上下文数据来全面确定潜在的机械(内在)或环境(外在)因素是否会影响移动能力,从而影响跌倒风险。在这里,进行了一项案例研究,以探讨和讨论如何使用现代基于视频的可穿戴设备来补充新兴的基于 IMU 的步态数据,以更好地告知习惯性跌倒风险评估。招募了一名中风幸存者,他在佩戴基于视频的眼镜和单个 IMU 的情况下,在实验室和其他地方进行了一系列移动任务。后者生成了根据当前研究实践讨论的主题步态特征。尽管目前基于 IMU 的方法开始提供习惯性数据,但它们仍然有限。鉴于可能影响基于移动性的步态的大量外在因素,需要使用视频数据来验证 IMU,以全面告知跌倒风险评估。基于人工智能(AI)的计算机视觉方法的使用可以以及时和合乎道德的方式极大地帮助视频数据的处理。有许多现成的 AI 工具可以满足这一当前需求,并提供一种自动化上下文分析的方法,以便更好地从 IMU 步态数据中告知移动能力,从而为习惯性跌倒风险评估提供个性化和现代的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9fe6/9866998/ebf68c41350e/sensors-23-00891-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验