文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

开发和评估用于目标检测的深度学习算法:实现卓越模型性能的要点。

Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance.

机构信息

Department of Radiology, Kyung Hee University Hospital, Kyung Hee University College of Medicine, Seoul, Korea.

出版信息

Korean J Radiol. 2023 Jul;24(7):698-714. doi: 10.3348/kjr.2022.0765.


DOI:10.3348/kjr.2022.0765
PMID:37404112
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10323413/
Abstract

In recent years, artificial intelligence, especially object detection-based deep learning in computer vision, has made significant advancements, driven by the development of computing power and the widespread use of graphic processor units. Object detection-based deep learning techniques have been applied in various fields, including the medical imaging domain, where remarkable achievements have been reported in disease detection. However, the application of deep learning does not always guarantee satisfactory performance, and researchers have been employing trial-and-error to identify the factors contributing to performance degradation and enhance their models. Moreover, due to the black-box problem, the intermediate processes of a deep learning network cannot be comprehended by humans; as a result, identifying problems in a deep learning model that exhibits poor performance can be challenging. This article highlights potential issues that may cause performance degradation at each deep learning step in the medical imaging domain and discusses factors that must be considered to improve the performance of deep learning models. Researchers who wish to begin deep learning research can reduce the required amount of trial-and-error by understanding the issues discussed in this study.

摘要

近年来,人工智能,特别是计算机视觉中的基于目标检测的深度学习,在计算能力的发展和图形处理器单元的广泛使用的推动下取得了重大进展。基于目标检测的深度学习技术已应用于各个领域,包括医学成像领域,在疾病检测方面已经取得了显著的成果。然而,深度学习的应用并不总是能保证令人满意的性能,研究人员一直在通过反复试验来识别导致性能下降的因素并改进他们的模型。此外,由于黑盒问题,人类无法理解深度学习网络的中间过程;因此,识别性能不佳的深度学习模型中的问题可能具有挑战性。本文强调了医学成像领域中深度学习的每个步骤中可能导致性能下降的潜在问题,并讨论了必须考虑的因素以提高深度学习模型的性能。希望开始进行深度学习研究的研究人员可以通过了解本研究中讨论的问题来减少所需的反复试验次数。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/4b978092dec0/kjr-24-698-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/5ec6c7e307d4/kjr-24-698-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/feafcde4bb01/kjr-24-698-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/29e395bd74e5/kjr-24-698-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/59ff7d1a557a/kjr-24-698-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/be770ccf8a35/kjr-24-698-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/4b978092dec0/kjr-24-698-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/5ec6c7e307d4/kjr-24-698-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/feafcde4bb01/kjr-24-698-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/29e395bd74e5/kjr-24-698-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/59ff7d1a557a/kjr-24-698-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/be770ccf8a35/kjr-24-698-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f14b/10323413/4b978092dec0/kjr-24-698-g006.jpg

相似文献

[1]
Developing and Evaluating Deep Learning Algorithms for Object Detection: Key Points for Achieving Superior Model Performance.

Korean J Radiol. 2023-7

[2]
Object recognition in medical images via anatomy-guided deep learning.

Med Image Anal. 2022-10

[3]
Understanding deep learning - challenges and prospects.

J Pak Med Assoc. 2022-2

[4]
Evaluation of techniques to improve a deep learning algorithm for the automatic detection of intracranial haemorrhage on CT head imaging.

Eur Radiol Exp. 2023-4-10

[5]
[Artificial intelligence in image analysis-fundamentals and new developments].

Hautarzt. 2020-9

[6]
Survey and Performance Analysis of Deep Learning Based Object Detection in Challenging Environments.

Sensors (Basel). 2021-7-28

[7]
Deep Learning-Based Artificial Intelligence for Mammography.

Korean J Radiol. 2021-8

[8]
A Review of Deep Learning for Screening, Diagnosis, and Detection of Glaucoma Progression.

Transl Vis Sci Technol. 2020-7

[9]
A Survey of Deep-Learning Applications in Ultrasound: Artificial Intelligence-Powered Ultrasound for Improving Clinical Workflow.

J Am Coll Radiol. 2019-9

[10]
Artificial intelligence based optimization with deep learning model for blockchain enabled intrusion detection in CPS environment.

Sci Rep. 2022-7-28

引用本文的文献

[1]
Hybrid model for predicting microsatellite instability in colorectal cancer using hematoxylin & eosin-stained images and clinical features.

Front Oncol. 2025-6-23

本文引用的文献

[1]
Comparison of single- and dual-energy CT combined with artificial intelligence for the diagnosis of pulmonary nodules.

Clin Radiol. 2023-2

[2]
Fully Automated MRI Segmentation and Volumetric Measurement of Intracranial Meningioma Using Deep Learning.

J Magn Reson Imaging. 2023-3

[3]
Reliable quality assurance of X-ray mammography scanner by evaluation the standard mammography phantom image using an interpretable deep learning model.

Eur J Radiol. 2022-9

[4]
A Novel MRI Diagnosis Method for Brain Tumor Classification Based on CNN and Bayesian Optimization.

Healthcare (Basel). 2022-3-8

[5]
Fracture Detection in Wrist X-ray Images Using Deep Learning-Based Object Detection Models.

Sensors (Basel). 2022-2-8

[6]
Deep Learning-Assisted Diagnosis of Pediatric Skull Fractures on Plain Radiographs.

Korean J Radiol. 2022-3

[7]
Effective End-to-End Deep Learning Process in Medical Imaging Using Independent Task Learning: Application for Diagnosis of Maxillary Sinusitis.

Yonsei Med J. 2021-12

[8]
Deep-learning single-shot detector for automatic detection of brain metastases with the combined use of contrast-enhanced and non-enhanced computed tomography images.

Eur J Radiol. 2021-11

[9]
Automatic segmentation of uterine endometrial cancer on multi-sequence MRI using a convolutional neural network.

Sci Rep. 2021-7-14

[10]
Novel Approaches to Detection of Cerebral Microbleeds: Single Deep Learning Model to Achieve a Balanced Performance.

J Stroke Cerebrovasc Dis. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索