文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

使用无人机通过深度学习算法对不安全建筑工地条件进行调查。

Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles.

作者信息

Kumar Sourav, Poyyamozhi Mukilan, Murugesan Balasubramanian, Rajamanickam Narayanamoorthi, Alroobaea Roobaea, Nureldeen Waleed

机构信息

Department of Civil Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.

Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Kattankulathur, Chennai 603203, India.

出版信息

Sensors (Basel). 2024 Oct 20;24(20):6737. doi: 10.3390/s24206737.


DOI:10.3390/s24206737
PMID:39460217
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11511453/
Abstract

The rapid adoption of Unmanned Aerial Vehicles (UAVs) in the construction industry has revolutionized safety, surveying, quality monitoring, and maintenance assessment. UAVs are increasingly used to prevent accidents caused by falls from heights or being struck by falling objects by ensuring workers comply with safety protocols. This study focuses on leveraging UAV technology to enhance labor safety by monitoring the use of personal protective equipment, particularly helmets, among construction workers. The developed UAV system utilizes the tensorflow technique and an alert system to detect and identify workers not wearing helmets. Employing the high-precision, high-speed, and widely applicable Faster R-CNN method, the UAV can accurately detect construction workers with and without helmets in real-time across various site conditions. This proactive approach ensures immediate feedback and intervention, significantly reducing the risk of injuries and fatalities. Additionally, the implementation of UAVs minimizes the workload of site supervisors by automating safety inspections and monitoring, allowing for more efficient and continuous oversight. The experimental results indicate that the UAV system's high precision, recall, and processing capabilities make it a reliable and cost-effective solution for improving construction site safety. The precision, mAP, and FPS of the developed system with the R-CNN are 93.1%, 58.45%, and 27 FPS. This study demonstrates the potential of UAV technology to enhance safety compliance, protect workers, and improve the overall quality of safety management in the construction industry.

摘要

无人机(UAV)在建筑行业的迅速应用彻底改变了安全、测量、质量监测和维护评估等领域。无人机越来越多地被用于通过确保工人遵守安全协议来预防高处坠落或被坠落物体击中造成的事故。本研究专注于利用无人机技术,通过监测建筑工人个人防护装备(尤其是安全帽)的使用情况来提高劳动安全。所开发的无人机系统利用tensorflow技术和警报系统来检测和识别未戴安全帽的工人。采用高精度、高速且广泛适用的Faster R-CNN方法,无人机能够在各种现场条件下实时准确地检测出戴安全帽和未戴安全帽的建筑工人。这种主动式方法可确保即时反馈和干预,显著降低受伤和死亡风险。此外,无人机的应用通过自动化安全检查和监测,减少了现场监督员的工作量,实现了更高效、持续的监督。实验结果表明,无人机系统的高精度、召回率和处理能力使其成为改善建筑工地安全的可靠且具有成本效益的解决方案。采用R-CNN的所开发系统的精度、平均精度均值(mAP)和每秒帧数(FPS)分别为93.1%、58.45%和27 FPS。本研究证明了无人机技术在提高安全合规性、保护工人以及改善建筑行业安全管理整体质量方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/af31f7468db2/sensors-24-06737-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/45b97bc5c72a/sensors-24-06737-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/91bd4166d127/sensors-24-06737-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/af31f7468db2/sensors-24-06737-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/45b97bc5c72a/sensors-24-06737-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/91bd4166d127/sensors-24-06737-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/23ac/11511453/af31f7468db2/sensors-24-06737-g004.jpg

相似文献

[1]
Investigation of Unsafe Construction Site Conditions Using Deep Learning Algorithms Using Unmanned Aerial Vehicles.

Sensors (Basel). 2024-10-20

[2]
Using Deep Learning and Low-Cost RGB and Thermal Cameras to Detect Pedestrians in Aerial Images Captured by Multirotor UAV.

Sensors (Basel). 2018-7-12

[3]
SMART SKY EYE System for Preliminary Structural Safety Assessment of Buildings Using Unmanned Aerial Vehicles.

Sensors (Basel). 2022-4-3

[4]
Unmanned Aerial Systems and Deep Learning for Safety and Health Activity Monitoring on Construction Sites.

Sensors (Basel). 2023-7-26

[5]
Real-time monitoring of work-at-height safety hazards in construction sites using drones and deep learning.

J Safety Res. 2022-12

[6]
Monitoring and Identification of Road Construction Safety Factors via UAV.

Sensors (Basel). 2022-11-14

[7]
UAV Visual and Thermographic Power Line Detection Using Deep Learning.

Sensors (Basel). 2024-8-31

[8]
Unmanned aerial vehicles in construction and worker safety.

Am J Ind Med. 2017-10-13

[9]
Comparing YOLOv3, YOLOv4 and YOLOv5 for Autonomous Landing Spot Detection in Faulty UAVs.

Sensors (Basel). 2022-1-8

[10]
Review on Type of Sensors and Detection Method of Anti-Collision System of Unmanned Aerial Vehicle.

Sensors (Basel). 2023-7-30

引用本文的文献

[1]
Innovative Technologies to Improve Occupational Safety in Mining and Construction Industries-Part I.

Sensors (Basel). 2025-8-21

本文引用的文献

[1]
Research on helmet wearing detection method based on deep learning.

Sci Rep. 2024-3-25

[2]
Multi-UUV Maneuvering Counter-Game for Dynamic Target Scenario Based on Fractional-Order Recurrent Neural Network.

IEEE Trans Cybern. 2023-6

[3]
Construction Site Safety Management: A Computer Vision and Deep Learning Approach.

Sensors (Basel). 2023-1-13

[4]
Monitoring and Identification of Road Construction Safety Factors via UAV.

Sensors (Basel). 2022-11-14

[5]
The Impact of Coworkers' Safety Violations on an Individual Worker: A Social Contagion Effect within the Construction Crew.

Int J Environ Res Public Health. 2018-4-17

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索