Suppr超能文献

一种用于合成孔径雷达(SAR)图像船舶分类的卷积神经网络(CNN)与长短期记忆网络(LSTM)组合网络

A Combined CNN-LSTM Network for Ship Classification on SAR Images.

作者信息

Toumi Abdelmalek, Cexus Jean-Christophe, Khenchaf Ali, Abid Mahdi

机构信息

ENSTA Bretagne, Lab-STICC, UMR CNRS 6285, 29806 Brest, France.

出版信息

Sensors (Basel). 2024 Dec 12;24(24):7954. doi: 10.3390/s24247954.

Abstract

Satellite SAR (synthetic aperture radar) imagery offers global coverage and all-weather recording capabilities, making it valuable for applications like remote sensing and maritime surveillance. However, its use in machine learning-based automatic target classification faces challenges, including the limited availability of SAR target training samples and the inherent constraints of SAR images, which provide less detailed features compared to natural images. These issues hinder the effective training of convolutional neural networks (CNNs) and complicate the transfer learning process due to the distinct imaging mechanisms of SAR and natural images. To address these challenges, we propose a shallow CNN architecture specifically designed to optimize performance on SAR datasets. Evaluations were performed on three datasets: FUSAR-Ship, OpenSARShip, and MSTAR. While the FUSAR-Ship and OpenSARShip datasets present difficulties due to their limited and imbalanced class distributions, MSTAR serves as a benchmark with balanced classes. To compare and optimize the proposed shallow architecture, we examine various properties of CNN components, such as the filter numbers and sizes in the convolution layers, to reduce redundancy, improve discrimination capability, and decrease network size and learning time. In the second phase of this paper, we combine the CNN with Long short-term memory (LSTM) networks to enhance SAR image classification. Comparative experiments with six state-of-the-art CNN architectures (VGG16, ResNet50, Xception, DenseNet121, EfficientNetB0, and MobileNetV2) demonstrate the superiority of the proposed approach, achieving competitive accuracy while significantly reducing training times and network complexity. This study underscores the potential of customized architectures to address SAR-specific challenges and enhance the efficiency of target classification.

摘要

星载合成孔径雷达(SAR)图像具有全球覆盖和全天候记录能力,使其在遥感和海上监视等应用中具有重要价值。然而,其在基于机器学习的自动目标分类中的应用面临挑战,包括SAR目标训练样本的可用性有限以及SAR图像的固有局限性,与自然图像相比,SAR图像提供的细节特征较少。这些问题阻碍了卷积神经网络(CNN)的有效训练,并由于SAR和自然图像不同的成像机制而使迁移学习过程变得复杂。为应对这些挑战,我们提出了一种专门设计的浅层CNN架构以优化在SAR数据集上的性能。在三个数据集上进行了评估:FUSAR-Ship、OpenSARShip和MSTAR。虽然FUSAR-Ship和OpenSARShip数据集由于其有限且不平衡的类别分布而存在困难,但MSTAR作为类别平衡的基准。为了比较和优化所提出的浅层架构,我们研究了CNN组件的各种属性,例如卷积层中的滤波器数量和大小,以减少冗余、提高辨别能力并减小网络规模和学习时间。在本文的第二阶段,我们将CNN与长短期记忆(LSTM)网络相结合以增强SAR图像分类。与六种最先进的CNN架构(VGG16、ResNet50、Xception、DenseNet121、EfficientNetB0和MobileNetV2)的对比实验证明了所提方法的优越性,在显著减少训练时间和网络复杂度的同时实现了具有竞争力的准确率。这项研究强调了定制架构在应对SAR特定挑战和提高目标分类效率方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b95b/11679796/1452764dbb69/sensors-24-07954-g006.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验