Suppr超能文献

基于亮度分类的内窥镜图像镜面反射检测与去除。

Specular Reflections Detection and Removal for Endoscopic Images Based on Brightness Classification.

机构信息

School of Integrated Circuits, Anhui University, Hefei 230601, China.

Anhui Engineering Laboratory of Agro-Ecological Big Data, Hefei 230601, China.

出版信息

Sensors (Basel). 2023 Jan 14;23(2):974. doi: 10.3390/s23020974.

Abstract

Specular Reflections often exist in the endoscopic image, which not only hurts many computer vision algorithms but also seriously interferes with the observation and judgment of the surgeon. The information behind the recovery specular reflection areas is a necessary pre-processing step in medical image analysis and application. The existing highlight detection method is usually only suitable for medium-brightness images. The existing highlight removal method is only applicable to images without large specular regions, when dealing with high-resolution medical images with complex texture information, not only does it have a poor recovery effect, but the algorithm operation efficiency is also low. To overcome these limitations, this paper proposes a specular reflection detection and removal method for endoscopic images based on brightness classification. It can effectively detect the specular regions in endoscopic images of different brightness and can improve the operating efficiency of the algorithm while restoring the texture structure information of the high-resolution image. In addition to achieving image brightness classification and enhancing the brightness component of low-brightness images, this method also includes two new steps: In the highlight detection phase, the adaptive threshold function that changes with the brightness of the image is used to detect absolute highlights. During the highlight recovery phase, the priority function of the exemplar-based image inpainting algorithm was modified to ensure reasonable and correct repairs. At the same time, local priority computing and adaptive local search strategies were used to improve algorithm efficiency and reduce error matching. The experimental results show that compared with the other state-of-the-art, our method shows better performance in terms of qualitative and quantitative evaluations, and the algorithm efficiency is greatly improved when processing high-resolution endoscopy images.

摘要

镜面反射在内镜图像中经常存在,不仅会伤害许多计算机视觉算法,还会严重干扰外科医生的观察和判断。恢复镜面反射区域背后的信息是医学图像分析和应用的必要预处理步骤。现有的高光检测方法通常仅适用于中亮度图像。现有的高光去除方法仅适用于没有大镜面区域的图像,在处理具有复杂纹理信息的高分辨率医学图像时,不仅恢复效果较差,而且算法的运算效率也较低。为了克服这些限制,本文提出了一种基于亮度分类的内镜图像镜面反射检测与去除方法。它可以有效地检测不同亮度的内镜图像中的镜面区域,并且可以在恢复高分辨率图像的纹理结构信息的同时提高算法的运算效率。除了实现图像亮度分类和增强低亮度图像的亮度分量外,该方法还包括两个新步骤:在高光检测阶段,使用随图像亮度变化的自适应阈值函数来检测绝对高光。在高光恢复阶段,修改基于范例的图像修复算法的优先级函数,以确保合理和正确的修复。同时,使用局部优先级计算和自适应局部搜索策略来提高算法效率并减少错误匹配。实验结果表明,与其他最先进的方法相比,我们的方法在定性和定量评估方面表现出更好的性能,并且在处理高分辨率内窥镜图像时大大提高了算法效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b86/9863038/bf4eb0eaaa1a/sensors-23-00974-g008.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验