Suppr超能文献

内镜图像镜面反射去除的无参矩阵分解。

Parameter-Free Matrix Decomposition for Specular Reflections Removal in Endoscopic Images.

机构信息

Department of Electronics and Communication EngineeringNational Institute of Technology at Calicut Kozhikode 673601 India.

Department of Computer ScienceNorwegian University of Science and Technology 7034 Trondheim Norway.

出版信息

IEEE J Transl Eng Health Med. 2023 Jun 6;11:360-374. doi: 10.1109/JTEHM.2023.3283444. eCollection 2023.

Abstract

Endoscopy is a medical diagnostic procedure used to see inside the human body with the help of a camera-attached system called the endoscope. Endoscopic images and videos suffer from specular reflections (or highlight) and can have an adverse impact on the diagnostic quality of images. These scattered white regions severely affect the visual appearance of images for both endoscopists and the computer-aided diagnosis of diseases. Methods & Results: We introduce a new parameter-free matrix decomposition technique to remove the specular reflections. The proposed method decomposes the original image into a highlight-free pseudo-low-rank component and a highlight component. Along with the highlight removal, the approach also removes the boundary artifacts present around the highlight regions, unlike the previous works based on family of Robust Principal Component Analysis (RPCA). The approach is evaluated on three publicly available endoscopy datasets: Kvasir Polyp, Kvasir Normal-Pylorus and Kvasir Capsule datasets. Our evaluation is benchmarked against 4 different state-of-the-art approaches using three different well-used metrics such as Structural Similarity Index Measure (SSIM), Percentage of highlights remaining and Coefficient of Variation (CoV). Conclusions: The results show significant improvements over the compared methods on all three metrics. The approach is further validated for statistical significance where it emerges better than other state-of-the-art approaches.The mathematical concepts of low rank and rank decomposition in matrix algebra are translated to remove specularities in the endoscopic images The result shows the impact of the proposed method in removing specular reflections from endoscopic images indicating improved diagnosis efficiency for both endoscopists and computer-aided diagnosis systems.

摘要

内窥镜检查是一种医学诊断程序,借助称为内窥镜的相机系统来观察人体内部。内窥镜图像和视频会受到镜面反射(或高光)的影响,这会对图像的诊断质量产生不利影响。这些散射的白色区域严重影响了内窥镜医生和疾病计算机辅助诊断对图像的视觉外观。

方法与结果

我们引入了一种新的无参数矩阵分解技术来去除镜面反射。该方法将原始图像分解为无高光的伪低秩分量和高光分量。与基于鲁棒主成分分析(RPCA)族的先前方法不同,该方法不仅可以去除高光区域周围的边界伪影,还可以去除高光。该方法在三个公开可用的内窥镜数据集上进行了评估:Kvasir Polyp、Kvasir Normal-Pylorus 和 Kvasir Capsule 数据集。我们使用三种不同的常用指标,如结构相似性指数度量(SSIM)、高光残留百分比和变化系数(CoV),对 4 种不同的最先进方法进行了评估。

结论

与比较方法相比,该方法在所有三个指标上都有显著的改进。该方法还针对统计学意义进行了验证,结果表明其优于其他最先进的方法。矩阵代数中的低秩和秩分解的数学概念被转化为去除内窥镜图像中的镜面反射。结果表明,该方法在去除内窥镜图像中的镜面反射方面具有显著效果,这将提高内窥镜医生和计算机辅助诊断系统的诊断效率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e76d/10332471/68af405ac31a/josep1abc-3283444.jpg

相似文献

1
Parameter-Free Matrix Decomposition for Specular Reflections Removal in Endoscopic Images.
IEEE J Transl Eng Health Med. 2023 Jun 6;11:360-374. doi: 10.1109/JTEHM.2023.3283444. eCollection 2023.
2
Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition.
IEEE Trans Med Imaging. 2020 Feb;39(2):328-340. doi: 10.1109/TMI.2019.2926501. Epub 2019 Jul 3.
4
Highlight removal for endoscopic images based on accelerated adaptive non-convex RPCA decomposition.
Comput Methods Programs Biomed. 2023 Jan;228:107240. doi: 10.1016/j.cmpb.2022.107240. Epub 2022 Nov 15.
5
A Temporal Learning Approach to Inpainting Endoscopic Specularities and Its Effect on Image Correspondence.
Med Image Anal. 2023 Dec;90:102994. doi: 10.1016/j.media.2023.102994. Epub 2023 Oct 4.
6
EndoSRR: a comprehensive multi-stage approach for endoscopic specular reflection removal.
Int J Comput Assist Radiol Surg. 2024 Jun;19(6):1203-1211. doi: 10.1007/s11548-024-03137-8. Epub 2024 Apr 20.
8
Content-aware specular reflection suppression based on adaptive image inpainting and neural network for endoscopic images.
Comput Methods Programs Biomed. 2020 Aug;192:105414. doi: 10.1016/j.cmpb.2020.105414. Epub 2020 Feb 28.
9
Specular highlight removal for endoscopic images using partial attention network.
Phys Med Biol. 2023 Nov 10;68(22). doi: 10.1088/1361-6560/ad02d9.
10
Separation of specular and diffuse components using tensor voting in color images.
Appl Opt. 2014 Nov 20;53(33):7924-36. doi: 10.1364/AO.53.007924.

引用本文的文献

本文引用的文献

1
Kvasir-Capsule, a video capsule endoscopy dataset.
Sci Data. 2021 May 27;8(1):142. doi: 10.1038/s41597-021-00920-z.
3
A deep learning framework for quality assessment and restoration in video endoscopy.
Med Image Anal. 2021 Feb;68:101900. doi: 10.1016/j.media.2020.101900. Epub 2020 Nov 13.
4
Detection of abnormality in wireless capsule endoscopy images using fractal features.
Comput Biol Med. 2020 Dec;127:104094. doi: 10.1016/j.compbiomed.2020.104094. Epub 2020 Oct 27.
5
Specular Reflections Removal for Endoscopic Image Sequences With Adaptive-RPCA Decomposition.
IEEE Trans Med Imaging. 2020 Feb;39(2):328-340. doi: 10.1109/TMI.2019.2926501. Epub 2019 Jul 3.
6
DeepLSR: a deep learning approach for laser speckle reduction.
Biomed Opt Express. 2019 May 17;10(6):2869-2882. doi: 10.1364/BOE.10.002869. eCollection 2019 Jun 1.
7
Gastroenterologist-Level Identification of Small-Bowel Diseases and Normal Variants by Capsule Endoscopy Using a Deep-Learning Model.
Gastroenterology. 2019 Oct;157(4):1044-1054.e5. doi: 10.1053/j.gastro.2019.06.025. Epub 2019 Jun 25.
8
Single Image Reflection Removal Using Convolutional Neural Networks.
IEEE Trans Image Process. 2018 Nov 9. doi: 10.1109/TIP.2018.2880088.
9
The status of augmented reality in laparoscopic surgery as of 2016.
Med Image Anal. 2017 Apr;37:66-90. doi: 10.1016/j.media.2017.01.007. Epub 2017 Jan 24.
10
Efficient and Robust Specular Highlight Removal.
IEEE Trans Pattern Anal Mach Intell. 2015 Jun;37(6):1304-11. doi: 10.1109/TPAMI.2014.2360402.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验