Suppr超能文献

一种用于修复内镜镜面反射的时间学习方法及其对图像匹配的影响。

A Temporal Learning Approach to Inpainting Endoscopic Specularities and Its Effect on Image Correspondence.

作者信息

Daher Rema, Vasconcelos Francisco, Stoyanov Danail

机构信息

Wellcome/EPSRC Centre for Interventional and Surgical Sciences (WEISS), University College London, Gower Street, London, WC1E 6BT, UK.

出版信息

Med Image Anal. 2023 Dec;90:102994. doi: 10.1016/j.media.2023.102994. Epub 2023 Oct 4.

Abstract

Video streams are utilised to guide minimally-invasive surgery and diagnosis in a wide range of procedures, and many computer-assisted techniques have been developed to automatically analyse them. These approaches can provide additional information to the surgeon such as lesion detection, instrument navigation, or anatomy 3D shape modelling. However, the necessary image features to recognise these patterns are not always reliably detected due to the presence of irregular light patterns such as specular highlight reflections. In this paper, we aim at removing specular highlights from endoscopic videos using machine learning. We propose using a temporal generative adversarial network (GAN) to inpaint the hidden anatomy under specularities, inferring its appearance spatially and from neighbouring frames, where they are not present in the same location. This is achieved using in-vivo data from gastric endoscopy (Hyper Kvasir) in a fully unsupervised manner that relies on the automatic detection of specular highlights. System evaluations show significant improvements to other methods through direct comparison and ablation studies that depict the importance of the network's temporal and transfer learning components. The generalisability of our system to different surgical setups and procedures was also evaluated qualitatively on in-vivo data of gastric endoscopy and ex-vivo porcine data (SERV-CT, SCARED). We also assess the effect of our method in comparison to other methods on computer vision tasks that underpin 3D reconstruction and camera motion estimation, namely stereo disparity, optical flow, and sparse point feature matching. These are evaluated quantitatively and qualitatively and results show a positive effect of our specular inpainting method on these tasks in a novel comprehensive analysis. Our code and dataset are made available at https://github.com/endomapper/Endo-STTN.

摘要

视频流被用于指导各种手术中的微创手术和诊断,并且已经开发了许多计算机辅助技术来自动分析这些视频流。这些方法可以为外科医生提供额外的信息,如病变检测、器械导航或解剖结构三维形状建模。然而,由于存在不规则的光模式,如镜面高光反射,识别这些模式所需的图像特征并不总是能可靠地检测到。在本文中,我们旨在使用机器学习从内窥镜视频中去除镜面高光。我们提出使用时间生成对抗网络(GAN)来修复镜面高光下隐藏的解剖结构,从空间上和相邻帧中推断其外观,因为在相邻帧中镜面高光不在同一位置。这是通过使用来自胃内窥镜检查(Hyper Kvasir)的体内数据以完全无监督的方式实现的,该方式依赖于镜面高光的自动检测。系统评估通过直接比较和消融研究表明,与其他方法相比有显著改进,这些研究描述了网络的时间和迁移学习组件的重要性。我们还在内窥镜检查的体内数据和体外猪数据(SERV-CT、SCARED)上定性评估了我们系统对不同手术设置和程序的通用性。我们还评估了我们的方法与其他方法相比,在支持三维重建和相机运动估计的计算机视觉任务(即立体视差、光流和稀疏点特征匹配)上的效果。对这些任务进行了定量和定性评估,结果在一项新颖的综合分析中表明,我们的镜面修复方法对这些任务有积极影响。我们的代码和数据集可在https://github.com/endomapper/Endo-STTN上获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4bd2/10958122/c5e30088cdc2/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验