Suppr超能文献

基于人工神经网络的活动分类、步态阶段估计和预测。

Artificial Neural Network-Based Activities Classification, Gait Phase Estimation, and Prediction.

机构信息

Lab of Biomechatronics and Intelligent Robotics (BIRO), Department of Mechanical and Aerospace Engineering, North Carolina State University, Raleigh, NC, 27695, USA.

Department of Rehabilitation and Regenerative Medicine, Columbia University Vagelos College of Physicians and Surgeons, New York, NY, 10032, USA.

出版信息

Ann Biomed Eng. 2023 Jul;51(7):1471-1484. doi: 10.1007/s10439-023-03151-y. Epub 2023 Jan 21.

Abstract

Gait patterns are critical to health monitoring, gait impairment assessment, and wearable device control. Unrhythmic gait pattern detection under community-based conditions is a new frontier in this area. The present paper describes a high-accuracy gait phase estimation and prediction algorithm built on a two-stage artificial neural network. This work targets to develop an algorithm that can estimate and predict the gait cycle in real time using a portable controller with only two IMU sensors (one on each thigh) in the community setting. Our algorithm can detect the gait phase in unrhythmic conditions during walking, stair ascending, and stair descending, and classify these activities with standing. Moreover, our algorithm is able to predict both future intra- and inter-stride gait phases, offering a potential means to improve wearable device controller performance. The proposed data-driven algorithm is based on a dataset consisting of 5 able-bodied subjects and validated on 3 different able-bodied subjects. Under unrhythmic activity situations, validation shows that the algorithm can accurately identify multiple activities with 99.55% accuracy, and estimate ([Formula: see text]: 6.3%) and predict 200-ms-ahead ([Formula: see text]: 8.6%) the gait phase percentage in real time, which are on average 57.7 and 54.0% smaller than the error from the event-based method in the same conditions. This study showcases a solution to estimate and predict gait status for multiple unrhythmic activities, which may be deployed to controllers for wearable robots or health monitoring devices.

摘要

步态模式对于健康监测、步态障碍评估和可穿戴设备控制至关重要。在社区环境下,无节奏步态模式的检测是该领域的一个新前沿。本文描述了一种基于两阶段人工神经网络的高精度步态相位估计和预测算法。本工作旨在开发一种算法,该算法可以使用仅在社区环境中每个大腿上安装一个的两个 IMU 传感器的便携式控制器实时估计和预测步态周期。我们的算法可以在行走、上楼梯和下楼梯过程中检测无节奏条件下的步态相位,并将这些活动与站立区分开来。此外,我们的算法能够预测未来的内步和跨步步态相位,为提高可穿戴设备控制器性能提供了一种潜在手段。所提出的数据驱动算法基于包含 5 个健全受试者的数据集,并在 3 个不同的健全受试者上进行验证。在无节奏活动情况下,验证表明该算法可以以 99.55%的准确率准确识别多种活动,并实时估计([公式:见文本]:6.3%)和预测 200 毫秒提前([公式:见文本]:8.6%)的步态相位百分比,平均比在相同条件下基于事件的方法的误差小 57.7%和 54.0%。本研究展示了一种用于估计和预测多种无节奏活动的步态状态的解决方案,可用于可穿戴机器人或健康监测设备的控制器。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验