Suppr超能文献

使用地面反力数据进行多运动任务的连续步态相位估计。

Continuous Gait Phase Estimation for Multi-Locomotion Tasks Using Ground Reaction Force Data.

机构信息

Safety Component R&D Center, Gyeonggi Regional Division, Korea Automotive Technology Institute, Siheung-si 15014, Republic of Korea.

Center for Bionics, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea.

出版信息

Sensors (Basel). 2024 Sep 29;24(19):6318. doi: 10.3390/s24196318.

Abstract

Existing studies on gait phase estimation generally involve walking experiments using inertial measurement units under limited walking conditions (WCs). In this study, a gait phase estimation algorithm is proposed that uses data from force sensing resistors (FSRs) and a Bi-LSTM model. The proposed algorithm estimates gait phases in real time under various WCs, e.g., walking on paved/unpaved roads, ascending and descending stairs, and ascending or descending on ramps. The performance of the proposed algorithm is evaluated by performing walking experiments on ten healthy adult participants. An average gait estimation accuracy exceeding 90% is observed with a small error (root mean square error = 0.794, R score = 0.906) across various WCs. These results demonstrate the wide applicability of the proposed gait phase estimation algorithm using various insole devices, e.g., in walking aid control, gait disturbance diagnosis in daily life, and motor ability analysis.

摘要

现有的步态相位估计研究通常涉及在有限的步行条件(WC)下使用惯性测量单元进行步行实验。本研究提出了一种使用力感电阻(FSR)和 Bi-LSTM 模型数据的步态相位估计算法。该算法可以在各种 WC 下实时估计步态相位,例如在铺砌/未铺砌的道路上行走、上下楼梯以及在斜坡上上下行。通过在十名健康成年参与者身上进行步行实验来评估所提出算法的性能。在各种 WC 下,观察到平均步态估计准确率超过 90%,误差较小(均方根误差=0.794,R 分数=0.906)。这些结果表明,使用各种鞋垫设备的提出的步态相位估计算法具有广泛的适用性,例如在步行辅助控制、日常生活中的步态障碍诊断和运动能力分析中。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f29/11478480/f8cd61283bec/sensors-24-06318-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验