Suppr超能文献

基于可穿戴传感器融合的运动分类和参数估计的机器学习策略。

A Machine Learning Strategy for Locomotion Classification and Parameter Estimation Using Fusion of Wearable Sensors.

出版信息

IEEE Trans Biomed Eng. 2021 May;68(5):1569-1578. doi: 10.1109/TBME.2021.3065809. Epub 2021 Apr 21.

Abstract

The accurate classification of ambulation modes and estimation of walking parameters is a challenging problem that is key to many applications. Knowledge of the user's state can enable rehabilitative devices to adapt to changing conditions, while in a clinical setting it can provide physicians with more detailed patient activity information. This study describes the development and optimization process of a combined locomotion mode classifier and environmental parameter estimator using machine learning and wearable sensors. A detailed analysis of the best sensor types and placements for each problem is also presented to provide device designers with information on which sensors to prioritize for their application. For this study, 15 able-bodied subjects were unilaterally instrumented with inertial measurement unit, goniometer, and electromyography sensors and data were collected for extensive ranges of level-ground, ramp, and stair walking conditions. The proposed system classifies steady state ambulation modes with 99% accuracy and ambulation mode transitions with 96% accuracy, along with estimating ramp incline within 1.25 degrees, stair height within 1.29 centimeters, and walking speed within 0.04 meters per second. Mechanical sensors (inertial measurement units, goniometers) are found to be most important for classification, while goniometers dominate ramp incline and stair height estimation, and speed estimation is performed largely with a single inertial measurement unit. The feature tables and Matlab code to replicate the study are published as supplemental materials.

摘要

对步态模式进行准确分类并估计行走参数是许多应用的关键问题。了解用户的状态可以使康复设备能够适应不断变化的条件,而在临床环境中,它可以为医生提供更详细的患者活动信息。本研究描述了一种使用机器学习和可穿戴传感器开发和优化组合式步态模式分类器和环境参数估计器的过程。还对每种问题的最佳传感器类型和位置进行了详细分析,为设备设计人员提供了有关为其应用优先考虑哪些传感器的信息。在这项研究中,15 名健全人单侧配备了惯性测量单元、测角仪和肌电图传感器,并采集了广泛的平地、斜坡和楼梯行走条件下的数据。所提出的系统以 99%的准确率对稳态步态模式进行分类,以 96%的准确率对步态模式转换进行分类,同时能够以 1.25 度的精度估计斜坡坡度,以 1.29 厘米的精度估计楼梯高度,以 0.04 米/秒的精度估计行走速度。研究发现,机械传感器(惯性测量单元、测角仪)对分类最为重要,而测角仪主导着斜坡坡度和楼梯高度的估计,速度估计主要由单个惯性测量单元完成。可复制本研究的特征表和 Matlab 代码已作为补充材料发布。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验