IEEE Trans Biomed Eng. 2018 Jun;65(6):1330-1338. doi: 10.1109/TBME.2017.2750139. Epub 2017 Sep 8.
This paper describes a gait classification method that utilizes measured motion of the thigh segment provided by an inertial measurement unit.
The classification method employs a phase-variable description of gait, and identifies a given activity based on the expected curvature characteristics of that activity over a gait cycle. The classification method was tested in experiments conducted with seven healthy subjects performing three different locomotor activities: level ground walking, stair descent, and stair ascent. Classification accuracy of the phase variable classification method was assessed for classifying each activity, and transitions between activities, and compared to a linear discriminant analysis (LDA) classifier as a benchmark.
For the subjects tested, the phase variable classification method outperformed LDA when using nonsubject-specific training data, while the LDA outperformed the phase variable approach when using subject-specific training.
The proposed method may provide improved classification accuracy for gait classification applications trained with nonsubject-specific data.
This paper offers a new method of gait classification based on a phase variable description. The method is shown to provide improved classification accuracy relative to an LDA pattern recognition framework when trained with nonsubject-specific data.
本文描述了一种利用惯性测量单元提供的大腿段测量运动来进行步态分类的方法。
该分类方法采用步态的时变描述,并根据步态周期中该活动的预期曲率特征来识别给定的活动。该分类方法在七名健康受试者进行的三项不同运动活动(平地行走、下楼梯和上楼梯)的实验中进行了测试。评估了相位变量分类方法对分类每种活动和活动之间的转换的分类准确性,并与线性判别分析(LDA)分类器作为基准进行了比较。
对于所测试的受试者,使用非特定于受试者的训练数据时,相位变量分类方法优于 LDA,而使用特定于受试者的训练数据时,LDA 优于相位变量方法。
该方法可以为使用非特定于受试者的数据进行训练的步态分类应用提供更高的分类准确性。
本文提出了一种基于相变量描述的新步态分类方法。与基于 LDA 的模式识别框架相比,当使用非特定于受试者的数据进行训练时,该方法显示出更高的分类准确性。