基于生物知识图谱的图神经网络在癌症免疫治疗反应研究中的应用
Biological knowledge graph-guided investigation of immune therapy response in cancer with graph neural network.
作者信息
Zhao Lianhe, Qi Xiaoning, Chen Yang, Qiao Yixuan, Bu Dechao, Wu Yang, Luo Yufan, Wang Sheng, Zhang Rui, Zhao Yi
机构信息
Research Center for Ubiquitous Computing Systems, Institute of Computing Technology, Chinese Academy of Sciences, Beijing 100190, China.
University of Chinese Academy of Sciences, Beijing 100049, China.
出版信息
Brief Bioinform. 2023 Mar 19;24(2). doi: 10.1093/bib/bbad023.
The determination of transcriptome profiles that mediate immune therapy in cancer remains a major clinical and biological challenge. Despite responses induced by immune-check points inhibitors (ICIs) in diverse tumor types and all the big breakthroughs in cancer immunotherapy, most patients with solid tumors do not respond to ICI therapies. It still remains a big challenge to predict the ICI treatment response. Here, we propose a framework with multiple prior knowledge networks guided for immune checkpoints inhibitors prediction-DeepOmix-ICI (or ICInet for short). ICInet can predict the immune therapy response by leveraging geometric deep learning and prior biological knowledge graphs of gene-gene interactions. Here, we demonstrate more than 600 ICI-treated patients with ICI response data and gene expression profile to apply on ICInet. ICInet was used for ICI therapy responses prediciton across different cancer types-melanoma, gastric cancer and bladder cancer, which includes 7 cohorts from different data sources. ICInet is able to robustly generalize into multiple cancer types. Moreover, the performance of ICInet in those cancer types can outperform other ICI biomarkers in the clinic. Our model [area under the curve (AUC = 0.85)] generally outperformed other measures, including tumor mutational burden (AUC = 0.62) and programmed cell death ligand-1 score (AUC = 0.74). Therefore, our study presents a prior-knowledge guided deep learning method to effectively select immunotherapy-response-associated biomarkers, thereby improving the prediction of immunotherapy response for precision oncology.
确定介导癌症免疫治疗的转录组图谱仍然是一项重大的临床和生物学挑战。尽管免疫检查点抑制剂(ICI)在多种肿瘤类型中引发了反应,并且癌症免疫治疗取得了所有重大突破,但大多数实体瘤患者对ICI治疗没有反应。预测ICI治疗反应仍然是一个巨大的挑战。在此,我们提出了一个由多个先验知识网络指导的用于免疫检查点抑制剂预测的框架——DeepOmix-ICI(简称ICInet)。ICInet可以通过利用几何深度学习和基因-基因相互作用的先验生物学知识图谱来预测免疫治疗反应。在此,我们展示了600多名接受ICI治疗且有ICI反应数据和基因表达谱的患者应用于ICInet。ICInet用于跨不同癌症类型(黑色素瘤、胃癌和膀胱癌)的ICI治疗反应预测,其中包括来自不同数据源的7个队列。ICInet能够可靠地推广到多种癌症类型。此外,ICInet在这些癌症类型中的表现优于临床上的其他ICI生物标志物。我们的模型[曲线下面积(AUC = 0.85)]总体上优于其他指标,包括肿瘤突变负荷(AUC = 0.62)和程序性细胞死亡配体-1评分(AUC = 0.74)。因此,我们的研究提出了一种先验知识指导的深度学习方法,以有效地选择免疫治疗反应相关的生物标志物,从而改善精准肿瘤学中免疫治疗反应的预测。