Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.
ImmunoBiome Inc., Pohang, 37666, Korea.
Nat Commun. 2022 Jun 28;13(1):3703. doi: 10.1038/s41467-022-31535-6.
Immune checkpoint inhibitors (ICIs) have substantially improved the survival of cancer patients over the past several years. However, only a minority of patients respond to ICI treatment (~30% in solid tumors), and current ICI-response-associated biomarkers often fail to predict the ICI treatment response. Here, we present a machine learning (ML) framework that leverages network-based analyses to identify ICI treatment biomarkers (NetBio) that can make robust predictions. We curate more than 700 ICI-treated patient samples with clinical outcomes and transcriptomic data, and observe that NetBio-based predictions accurately predict ICI treatment responses in three different cancer types-melanoma, gastric cancer, and bladder cancer. Moreover, the NetBio-based prediction is superior to predictions based on other conventional ICI treatment biomarkers, such as ICI targets or tumor microenvironment-associated markers. This work presents a network-based method to effectively select immunotherapy-response-associated biomarkers that can make robust ML-based predictions for precision oncology.
在过去的几年中,免疫检查点抑制剂(ICIs)极大地提高了癌症患者的生存率。然而,只有少数患者对 ICI 治疗有反应(实体瘤中约为 30%),并且当前的 ICI 反应相关生物标志物往往无法预测 ICI 治疗反应。在这里,我们提出了一个机器学习(ML)框架,该框架利用基于网络的分析来识别能够做出可靠预测的 ICI 治疗生物标志物(NetBio)。我们整理了超过 700 份具有临床结局和转录组数据的 ICI 治疗患者样本,并观察到基于 NetBio 的预测能够准确预测三种不同癌症类型(黑色素瘤、胃癌和膀胱癌)中的 ICI 治疗反应。此外,基于 NetBio 的预测优于基于其他传统 ICI 治疗生物标志物(如 ICI 靶点或肿瘤微环境相关标志物)的预测。这项工作提出了一种基于网络的方法,可有效选择免疫治疗反应相关的生物标志物,从而为精准肿瘤学做出可靠的基于 ML 的预测。