Suppr超能文献

基于网络的机器学习方法预测癌症患者的免疫治疗反应。

Network-based machine learning approach to predict immunotherapy response in cancer patients.

机构信息

Department of Life Sciences, Pohang University of Science and Technology, Pohang, 37673, Korea.

ImmunoBiome Inc., Pohang, 37666, Korea.

出版信息

Nat Commun. 2022 Jun 28;13(1):3703. doi: 10.1038/s41467-022-31535-6.

Abstract

Immune checkpoint inhibitors (ICIs) have substantially improved the survival of cancer patients over the past several years. However, only a minority of patients respond to ICI treatment (~30% in solid tumors), and current ICI-response-associated biomarkers often fail to predict the ICI treatment response. Here, we present a machine learning (ML) framework that leverages network-based analyses to identify ICI treatment biomarkers (NetBio) that can make robust predictions. We curate more than 700 ICI-treated patient samples with clinical outcomes and transcriptomic data, and observe that NetBio-based predictions accurately predict ICI treatment responses in three different cancer types-melanoma, gastric cancer, and bladder cancer. Moreover, the NetBio-based prediction is superior to predictions based on other conventional ICI treatment biomarkers, such as ICI targets or tumor microenvironment-associated markers. This work presents a network-based method to effectively select immunotherapy-response-associated biomarkers that can make robust ML-based predictions for precision oncology.

摘要

在过去的几年中,免疫检查点抑制剂(ICIs)极大地提高了癌症患者的生存率。然而,只有少数患者对 ICI 治疗有反应(实体瘤中约为 30%),并且当前的 ICI 反应相关生物标志物往往无法预测 ICI 治疗反应。在这里,我们提出了一个机器学习(ML)框架,该框架利用基于网络的分析来识别能够做出可靠预测的 ICI 治疗生物标志物(NetBio)。我们整理了超过 700 份具有临床结局和转录组数据的 ICI 治疗患者样本,并观察到基于 NetBio 的预测能够准确预测三种不同癌症类型(黑色素瘤、胃癌和膀胱癌)中的 ICI 治疗反应。此外,基于 NetBio 的预测优于基于其他传统 ICI 治疗生物标志物(如 ICI 靶点或肿瘤微环境相关标志物)的预测。这项工作提出了一种基于网络的方法,可有效选择免疫治疗反应相关的生物标志物,从而为精准肿瘤学做出可靠的基于 ML 的预测。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f4a7/9240063/6db897dd774d/41467_2022_31535_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验