Jiang Yuexu, Immadi Manish Sridhar, Wang Duolin, Zeng Shuai, On Chan Yen, Zhou Jing, Xu Dong, Joshi Trupti
Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA; Christopher S. Bond Life Sciences Center, University of Missouri-Columbia, Columbia, MO, USA.
Department of Electrical Engineering and Computer Science, University of Missouri-Columbia, Columbia, MO, USA.
J Adv Res. 2025 Jun;72:319-331. doi: 10.1016/j.jare.2024.07.036. Epub 2024 Aug 7.
Immune checkpoint inhibitors (ICIs) are potent and precise therapies for various cancer types, significantly improving survival rates in patients who respond positively to them. However, only a minority of patients benefit from ICI treatments.
Identifying ICI responders before treatment could greatly conserve medical resources, minimize potential drug side effects, and expedite the search for alternative therapies. Our goal is to introduce a novel deep-learning method to predict ICI treatment responses in cancer patients.
The proposed deep-learning framework leverages graph neural network and biological pathway knowledge. We trained and tested our method using ICI-treated patients' data from several clinical trials covering melanoma, gastric cancer, and bladder cancer.
Our results demonstrate that this predictive model outperforms current state-of-the-art methods and tumor microenvironment-based predictors. Additionally, the model quantifies the importance of pathways, pathway interactions, and genes in its predictions. A web server for IRnet has been developed and deployed, providing broad accessibility to users at https://irnet.missouri.edu.
IRnet is a competitive tool for predicting patient responses to immunotherapy, specifically ICIs. Its interpretability also offers valuable insights into the mechanisms underlying ICI treatments.
免疫检查点抑制剂(ICIs)是针对多种癌症类型的有效且精准的疗法,能显著提高对其产生阳性反应患者的生存率。然而,只有少数患者能从ICI治疗中获益。
在治疗前识别ICI反应者可极大地节省医疗资源、将潜在药物副作用降至最低,并加快寻找替代疗法的速度。我们的目标是引入一种新颖的深度学习方法来预测癌症患者的ICI治疗反应。
所提出的深度学习框架利用了图神经网络和生物通路知识。我们使用来自多项涵盖黑色素瘤、胃癌和膀胱癌的临床试验中接受ICI治疗患者的数据对我们的方法进行了训练和测试。
我们的结果表明,这种预测模型优于当前的先进方法和基于肿瘤微环境的预测器。此外,该模型在其预测中量化了通路、通路相互作用和基因的重要性。已开发并部署了用于IRnet的网络服务器,在https://irnet.missouri.edu为用户提供广泛的访问权限。
IRnet是预测患者对免疫疗法(特别是ICIs)反应的一种有竞争力的工具。其可解释性还为ICI治疗背后的机制提供了有价值的见解。