迁移学习作为一种基于人工智能的解决方案,可解决空间医学中数据集有限的问题。

Transfer learning as an AI-based solution to address limited datasets in space medicine.

机构信息

University College Dublin School of Medicine, Belfield, Dublin, Ireland.

Michigan Medicine, University of Michigan, Ann Arbor, United States.

出版信息

Life Sci Space Res (Amst). 2023 Feb;36:36-38. doi: 10.1016/j.lssr.2022.12.002. Epub 2023 Jan 1.

Abstract

The advent of artificial intelligence (AI) has a promising role in the future long-duration spaceflight missions. Traditional AI algorithms rely on training and testing data from the same domain. However, astronaut medical data is naturally limited to a small sample size and often difficult to collect, leading to extremely limited datasets. This significantly limits the ability of traditional machine learning methodologies. Transfer learning is a potential solution to overcome this dataset size limitation and can help improve training time and performance of a neural networks. We discuss the unique challenges of space medicine in producing datasets and transfer learning as an emerging technique to address these issues.

摘要

人工智能(AI)在未来的长时间太空飞行任务中具有广阔的应用前景。传统的 AI 算法依赖于来自同一领域的训练和测试数据。然而,宇航员的医疗数据自然受到样本量小的限制,并且通常难以收集,导致数据集非常有限。这极大地限制了传统机器学习方法的能力。迁移学习是克服这种数据集大小限制的一种潜在解决方案,可以帮助提高神经网络的训练时间和性能。我们讨论了在生成数据集和迁移学习方面的独特挑战,迁移学习是解决这些问题的新兴技术。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索