机器学习在医学中的应用:临床医生应该了解的知识。

Machine learning in medicine: what clinicians should know.

机构信息

Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore.

National Healthcare Group Polyclinics (Geylang Polyclinic), Singapore.

出版信息

Singapore Med J. 2023 Feb;64(2):91-97. doi: 10.11622/smedj.2021054. Epub 2021 May 19.

Abstract

With the advent of artificial intelligence (AI), machines are increasingly being used to complete complicated tasks, yielding remarkable results. Machine learning (ML) is the most relevant subset of AI in medicine, which will soon become an integral part of our everyday practice. Therefore, physicians should acquaint themselves with ML and AI, and their role as an enabler rather than a competitor. Herein, we introduce basic concepts and terms used in AI and ML, and aim to demystify commonly used AI/ML algorithms such as learning methods including neural networks/deep learning, decision tree and application domain in computer vision and natural language processing through specific examples. We discuss how machines are already being used to augment the physician's decision-making process, and postulate the potential impact of ML on medical practice and medical research based on its current capabilities and known limitations. Moreover, we discuss the feasibility of full machine autonomy in medicine.

摘要

随着人工智能(AI)的出现,机器越来越多地被用于完成复杂的任务,取得了显著的成果。机器学习(ML)是医学中与 AI 最相关的一个子集,它将很快成为我们日常实践的一个组成部分。因此,医生应该熟悉 ML 和 AI,并将其作为一种辅助手段,而不是竞争对手。在此,我们介绍 AI 和 ML 中使用的基本概念和术语,并通过具体示例尝试揭开常用的 AI/ML 算法(如神经网络/深度学习、决策树等学习方法)的神秘面纱,以及其在计算机视觉和自然语言处理中的应用领域。我们讨论了机器如何已经被用于增强医生的决策过程,并根据其当前能力和已知限制,推测 ML 对医学实践和医学研究的潜在影响。此外,我们还讨论了在医学中实现完全机器自主的可行性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2dd3/10071847/2959da034e0b/SMJ-64-91-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索