Suppr超能文献

弓形虫感染后锥体神经元上依赖补体的抑制性突触丧失

Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection.

作者信息

Carrillo Gabriela L, Su Jianmin, Cawley Mikel L, Wei Derek, Gill Simran K, Blader Ira J, Fox Michael A

机构信息

Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, Virginia, USA.

Graduate Program in Translational Biology, Medicine, and Health, Virginia Tech, Blacksburg, Virginia, USA.

出版信息

J Neurochem. 2024 Oct;168(10):3365-3385. doi: 10.1111/jnc.15770. Epub 2023 Feb 17.

Abstract

The apicomplexan parasite Toxoplasma gondii has developed mechanisms to establish a central nervous system infection in virtually all warm-blooded animals. Acute T. gondii infection can cause neuroinflammation, encephalitis, and seizures. Meanwhile, studies in humans, nonhuman primates, and rodents have linked chronic T. gondii infection with altered behavior and increased risk for neuropsychiatric disorders, including schizophrenia. These observations and associations raise questions about how this parasitic infection may alter neural circuits. We previously demonstrated that T. gondii infection triggers the loss of inhibitory perisomatic synapses, a type of synapse whose dysfunction or loss has been linked to neurological and neuropsychiatric disorders. We showed that phagocytic cells (including microglia and infiltrating monocytes) contribute to the loss of these inhibitory synapses. Here, we show that these phagocytic cells specifically ensheath excitatory pyramidal neurons, leading to the preferential loss of perisomatic synapses on these neurons and not those on cortical interneurons. Moreover, we show that infection induces an increased expression of the complement C3 gene, including by populations of these excitatory neurons. Infecting C3-deficient mice with T. gondii revealed that C3 is required for the loss of perisomatic inhibitory synapses. Interestingly, loss of C1q did not prevent the loss of perisomatic synapses following infection. Together, these findings provide evidence that T. gondii induces changes in excitatory pyramidal neurons that trigger the selective removal of inhibitory perisomatic synapses and provide a role for a nonclassical complement pathway in the remodeling of inhibitory circuits in the infected brain.

摘要

顶复门寄生虫刚地弓形虫已进化出在几乎所有温血动物中建立中枢神经系统感染的机制。急性刚地弓形虫感染可导致神经炎症、脑炎和癫痫发作。同时,在人类、非人灵长类动物和啮齿动物中的研究表明,慢性刚地弓形虫感染与行为改变以及神经精神疾病(包括精神分裂症)的风险增加有关。这些观察结果和关联引发了关于这种寄生虫感染如何改变神经回路的问题。我们之前证明,刚地弓形虫感染会引发抑制性胞体周围突触的丧失,这种突触功能障碍或丧失与神经和神经精神疾病有关。我们表明,吞噬细胞(包括小胶质细胞和浸润的单核细胞)促成了这些抑制性突触的丧失。在此,我们表明这些吞噬细胞特异性地包裹兴奋性锥体神经元,导致这些神经元上的胞体周围突触而非皮质中间神经元上的突触优先丧失。此外,我们表明感染会诱导补体C3基因表达增加,包括这些兴奋性神经元群体。用刚地弓形虫感染C3缺陷小鼠发现,C3是胞体周围抑制性突触丧失所必需的。有趣的是,C1q的缺失并不能阻止感染后胞体周围突触的丧失。总之,这些发现提供了证据,表明刚地弓形虫会诱导兴奋性锥体神经元发生变化,从而触发抑制性胞体周围突触的选择性清除,并为非经典补体途径在感染大脑中抑制性回路重塑中的作用提供了依据。

相似文献

1
Complement-dependent loss of inhibitory synapses on pyramidal neurons following Toxoplasma gondii infection.
J Neurochem. 2024 Oct;168(10):3365-3385. doi: 10.1111/jnc.15770. Epub 2023 Feb 17.
2
Toxoplasma infection induces microglia-neuron contact and the loss of perisomatic inhibitory synapses.
Glia. 2020 Oct;68(10):1968-1986. doi: 10.1002/glia.23816. Epub 2020 Mar 11.
5
Cerebral complement C1q activation in chronic Toxoplasma infection.
Brain Behav Immun. 2016 Nov;58:52-56. doi: 10.1016/j.bbi.2016.04.009. Epub 2016 Apr 22.
8
Reduced removal of synaptic terminals from axotomized spinal motoneurons in the absence of complement C3.
Exp Neurol. 2012 Sep;237(1):8-17. doi: 10.1016/j.expneurol.2012.06.008. Epub 2012 Jun 19.
9
Complement C1q-C3-associated synaptic changes in multiple sclerosis hippocampus.
Ann Neurol. 2015 Jun;77(6):1007-26. doi: 10.1002/ana.24398. Epub 2015 May 11.
10
Complement C1q/C3-CR3 signaling pathway mediates abnormal microglial phagocytosis of synapses in a mouse model of depression.
Brain Behav Immun. 2024 Jul;119:454-464. doi: 10.1016/j.bbi.2024.04.018. Epub 2024 Apr 18.

引用本文的文献

2
A parasite odyssey: An RNA virus concealed in .
Virus Evol. 2024 May 11;10(1):veae040. doi: 10.1093/ve/veae040. eCollection 2024.
3
Collagen XIX is required for pheromone recognition and glutamatergic synapse formation in mouse accessory olfactory bulb.
Front Cell Neurosci. 2023 Apr 5;17:1157577. doi: 10.3389/fncel.2023.1157577. eCollection 2023.

本文引用的文献

1
A Meta-Analysis of the Prevalence of Toxoplasmosis in Livestock and Poultry Worldwide.
Ecohealth. 2022 Mar;19(1):55-74. doi: 10.1007/s10393-022-01575-x. Epub 2022 Feb 8.
2
GABA-receptive microglia selectively sculpt developing inhibitory circuits.
Cell. 2021 Jul 22;184(15):4048-4063.e32. doi: 10.1016/j.cell.2021.06.018. Epub 2021 Jul 6.
3
The Polymorphic Effector GRA15 Mediates Seizure Induction by Modulating Interleukin-1 Signaling in the Brain.
mBio. 2021 Jun 29;12(3):e0133121. doi: 10.1128/mBio.01331-21. Epub 2021 Jun 22.
4
Injection with protein affects neuron health and survival.
Elife. 2021 Jun 9;10:e67681. doi: 10.7554/eLife.67681.
5
A Protective and Pathogenic Role for Complement During Acute Infection.
Front Cell Infect Microbiol. 2021 Feb 22;11:634610. doi: 10.3389/fcimb.2021.634610. eCollection 2021.
7
Complement Drives Synaptic Degeneration and Progressive Cognitive Decline in the Chronic Phase after Traumatic Brain Injury.
J Neurosci. 2021 Feb 24;41(8):1830-1843. doi: 10.1523/JNEUROSCI.1734-20.2020. Epub 2021 Jan 14.
9
Microglial Displacement of GABAergic Synapses Is a Protective Event during Complex Febrile Seizures.
Cell Rep. 2020 Nov 3;33(5):108346. doi: 10.1016/j.celrep.2020.108346.
10
CSF1R signaling is a regulator of pathogenesis in progressive MS.
Cell Death Dis. 2020 Oct 23;11(10):904. doi: 10.1038/s41419-020-03084-7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验