文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

3D 打印的由多种生物材料组成的生物支架在治疗骨肿瘤中的双重作用。

The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.

机构信息

Department of Spine Surgery, China-Japan Union Hospital of Jilin University, Changchun, People's Republic of China.

Department of Respiratory Medicine, No.964 Hospital of People's Liberation Army, Changchun, People's Republic of China.

出版信息

Int J Nanomedicine. 2023 Jan 15;18:293-305. doi: 10.2147/IJN.S390500. eCollection 2023.


DOI:10.2147/IJN.S390500
PMID:36683596
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9851059/
Abstract

Bone tumors, including primary bone tumors, invasive bone tumors, metastatic bone tumors, and others, are one of the most clinical difficulties in orthopedics. Once these tumors have grown and developed in the bone system, they will interact with osteocytes and other environmental cells in the bone system's microenvironment, leading to the eventual damage of the bone's physical structure. Surgical procedures for bone tumors may result in permanent defects. The dual-efficacy of tissue regeneration and tumor treatment has made biomaterial scaffolds frequently used in treating bone tumors. 3D printing technology, also known as additive manufacturing or rapid printing prototype, is the transformation of 3D computer models into physical models through deposition, curing, and material fusion of successive layers. Adjustable shape, porosity/pore size, and other mechanical properties are an advantage of 3D-printed objects, unlike natural and synthetic material with fixed qualities. Researchers have demonstrated the significant role of diverse 3D-printed biological scaffolds in the treatment for bone tumors and the regeneration of bone tissue, and that they enhanced various performance of the products. Based on the characteristics of bone tumors, this review synthesized the findings of current researchers on the application of various 3D-printed biological scaffolds including bioceramic scaffold, metal alloy scaffold and nano-scaffold, in bone tumors and discussed the advantages, disadvantages, and future application prospects of various types of 3D-printed biological scaffolds. Finally, the future development trend of 3D-printed biological scaffolds in bone tumor is summarized, providing a theoretical foundation and a larger outlook for the use of biological scaffolds in the treatment of patients with bone tumors.

摘要

骨肿瘤,包括原发性骨肿瘤、侵袭性骨肿瘤、转移性骨肿瘤等,是骨科领域最具临床挑战性的问题之一。一旦这些肿瘤在骨系统中生长和发展,它们将与骨系统微环境中的成骨细胞和其他环境细胞相互作用,最终导致骨的物理结构受损。骨肿瘤的手术治疗可能会导致永久性缺陷。组织再生和肿瘤治疗的双重功效使得生物材料支架在治疗骨肿瘤中经常被使用。3D 打印技术,也称为增材制造或快速原型制造,是通过连续层的沉积、固化和材料融合,将 3D 计算机模型转化为物理模型。与具有固定质量的天然和合成材料不同,3D 打印物体具有可调节形状、孔隙率/孔径和其他机械性能等优点。研究人员已经证明了各种 3D 打印生物支架在治疗骨肿瘤和骨组织再生方面的重要作用,并且它们增强了产品的各种性能。基于骨肿瘤的特点,本文综合了当前研究人员关于各种 3D 打印生物支架(包括生物陶瓷支架、金属合金支架和纳米支架)在骨肿瘤中的应用的研究结果,并讨论了各种类型的 3D 打印生物支架的优缺点和未来的应用前景。最后,总结了 3D 打印生物支架在骨肿瘤中的未来发展趋势,为生物支架在骨肿瘤患者治疗中的应用提供了理论基础和更广阔的前景。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/70bf9ceee1c4/IJN-18-293-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/825cb497c93d/IJN-18-293-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/e777659e4301/IJN-18-293-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/70bf9ceee1c4/IJN-18-293-g0003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/825cb497c93d/IJN-18-293-g0001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/e777659e4301/IJN-18-293-g0002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd91/9851059/70bf9ceee1c4/IJN-18-293-g0003.jpg

相似文献

[1]
The Dual Effect of 3D-Printed Biological Scaffolds Composed of Diverse Biomaterials in the Treatment of Bone Tumors.

Int J Nanomedicine. 2023

[2]
3D-printed bioceramic scaffolds: From bone tissue engineering to tumor therapy.

Acta Biomater. 2018-8-28

[3]
3D-printed scaffolds with bioactive elements-induced photothermal effect for bone tumor therapy.

Acta Biomater. 2018-4-13

[4]
Three-dimensional (3D) printed scaffold and material selection for bone repair.

Acta Biomater. 2018-11-24

[5]
3D-printed porous tantalum artificial bone scaffolds: fabrication, properties, and applications.

Biomed Mater. 2024-5-15

[6]
Fabrication and mechanical characterization of 3D printed vertical uniform and gradient scaffolds for bone and osteochondral tissue engineering.

Acta Biomater. 2019-3-21

[7]
Towards resorbable 3D-printed scaffolds for craniofacial bone regeneration.

Orthod Craniofac Res. 2023-12

[8]
Pore Size of 3D-Printed Polycaprolactone/Polyethylene Glycol/Hydroxyapatite Scaffolds Affects Bone Regeneration by Modulating Macrophage Polarization and the Foreign Body Response.

ACS Appl Mater Interfaces. 2022-5-11

[9]
Cold atmospheric plasma (CAP) surface nanomodified 3D printed polylactic acid (PLA) scaffolds for bone regeneration.

Acta Biomater. 2016-12

[10]
Three-Dimensional Printing of Biodegradable Piperazine-Based Polyurethane-Urea Scaffolds with Enhanced Osteogenesis for Bone Regeneration.

ACS Appl Mater Interfaces. 2019-2-13

引用本文的文献

[1]
Nano-scaffold containing functional motif of stromal cell-derived factor 1 enhances neural stem cell behavior and synaptogenesis in traumatic brain injury.

Sci Rep. 2025-2-17

[2]
Osteosarcoma: A comprehensive review of model systems and experimental therapies.

Med Res Arch. 2024-11

[3]
3D Bioprinting in Cancer Modeling and Biomedicine: From Print Categories to Biological Applications.

ACS Omega. 2024-10-25

[4]
Research trends of bone tumor treatment with 3D printing technology from 2013 to 2022: a bibliometric analysis.

Discov Oncol. 2024-8-19

[5]
Innovations in three-dimensional-printed individualized bone prosthesis materials: revolutionizing orthopedic surgery: a review.

Int J Surg. 2024-10-1

本文引用的文献

[1]
Additive Manufacturing of Biomaterials-Design Principles and Their Implementation.

Materials (Basel). 2022-8-8

[2]
A 3D Printed Bone Tissue Engineering Scaffold Composed of Alginate Dialdehyde-Gelatine Reinforced by Lysozyme Loaded Cerium Doped Mesoporous Silica-Calcia Nanoparticles.

Macromol Biosci. 2022-9

[3]
Bone Tissue Engineering through 3D Bioprinting of Bioceramic Scaffolds: A Review and Update.

Life (Basel). 2022-6-16

[4]
Bifunctional scaffolds for tumor therapy and bone regeneration: Synergistic effect and interplay between therapeutic agents and scaffold materials.

Mater Today Bio. 2022-6-9

[5]
Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence.

ACS Appl Mater Interfaces. 2022-6-22

[6]
3D printed hydrogel scaffolds combining glutathione depletion-induced ferroptosis and photothermia-augmented chemodynamic therapy for efficiently inhibiting postoperative tumor recurrence.

J Nanobiotechnology. 2022-6-7

[7]
Optimization and Characterization of a Bone Culture Model to Study Prostate Cancer Bone Metastasis.

Mol Cancer Ther. 2022-8-2

[8]
Engineering 3D Printed Scaffolds with Tunable Hydroxyapatite.

J Funct Biomater. 2022-3-23

[9]
A Tumor Microenvironments-Adapted Polypeptide Hydrogel/Nanogel Composite Boosts Antitumor Molecularly Targeted Inhibition and Immunoactivation.

Adv Mater. 2022-5

[10]
Crosslinking effect of dialdehyde cholesterol modified starch nanoparticles on collagen hydrogel.

Carbohydr Polym. 2022-6-1

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索