文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

NIR-II live imaging study on the degradation pattern of collagen in the mouse model.

作者信息

Li Huizhu, Meng Xinxian, Sheng Huaixuan, Feng Sijia, Chen Yuzhou, Sheng Dandan, Sai Liman, Wang Yueming, Chen Mo, Wo Yan, Feng Shaoqing, Baharvand Hossein, Gao Yanglai, Li Yunxia, Chen Jun

机构信息

Department of Sports Medicine, Sports Medicine Institute of Fudan University, Huashan Hospital, Fudan University, Shanghai 200040, China.

Department of Plastic and Reconstructive Surgery, School of Medicine, Shanghai Jiao Tong University, Shanghai Ninth People's Hospital, Shanghai 200011, China.

出版信息

Regen Biomater. 2022 Dec 13;10:rbac102. doi: 10.1093/rb/rbac102. eCollection 2023.


DOI:10.1093/rb/rbac102
PMID:36683755
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9847529/
Abstract

The degradation of collagen in different body parts is a critical point for designing collagen-based biomedical products. Here, three kinds of collagens labeled by second near-infrared (NIR-II) quantum dots (QDs), including collagen with low crosslinking degree (LC), middle crosslinking degree (MC) and high crosslinking degree (HC), were injected into the subcutaneous tissue, muscle and joints of the mouse model, respectively, in order to investigate the degradation pattern of collagen by NIR-II live imaging. The results of NIR-II imaging indicated that all tested collagens could be fully degraded after 35 days in the subcutaneous tissue, muscle and joints of the mouse model. However, the average degradation rate of subcutaneous tissue ( = 0.13) and muscle ( = 0.23) was slower than that of the joints (shoulder:  = 0.42, knee:  = 0.55). Specifically, the degradation rate of HC ( = 0.13) was slower than LC ( = 0.30) in muscle, while HC showed the fastest degradation rate in the shoulder and knee joints. In summary, NIR-II imaging could precisely identify the degradation rate of collagen. Moreover, the degradation rate of collagen was more closely related to the implanted body parts rather than the crosslinking degree of collagen, which was slower in the subcutaneous tissue and muscle compared to the joints in the mouse model.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/04145b264673/rbac102f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/14132c497007/rbac102f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/e5a3962ab195/rbac102f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/b7c1df54928d/rbac102f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/5623996a8774/rbac102f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/b8eb21dfcc89/rbac102f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/5ccc4e23415c/rbac102f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/f51d1967f553/rbac102f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/898a33214338/rbac102f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/04145b264673/rbac102f9.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/14132c497007/rbac102f7.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/e5a3962ab195/rbac102f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/b7c1df54928d/rbac102f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/5623996a8774/rbac102f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/b8eb21dfcc89/rbac102f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/5ccc4e23415c/rbac102f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/f51d1967f553/rbac102f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/898a33214338/rbac102f8.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5165/9847529/04145b264673/rbac102f9.jpg

相似文献

[1]
NIR-II live imaging study on the degradation pattern of collagen in the mouse model.

Regen Biomater. 2022-12-13

[2]
Evaluation of Targeting Efficiency of Joints with Anticollagen II Antibodies.

Mol Pharm. 2019-5-15

[3]
Near-Infrared-II Quantum Dots for In Vivo Imaging and Cancer Therapy.

Small. 2022-2

[4]
A self-assembled nanoplatform based on AgS quantum dots and tellurium nanorods for combined chemo-photothermal therapy guided by HO-activated near-infrared-II fluorescence imaging.

Acta Biomater. 2022-3-1

[5]
Effects of crosslinking degree of an acellular biological tissue on its tissue regeneration pattern.

Biomaterials. 2004-8

[6]
Toxicity assessment of repeated intravenous injections of arginine-glycine-aspartic acid peptide conjugated CdSeTe/ZnS quantum dots in mice.

Int J Nanomedicine. 2014-10-17

[7]
Effect of chemical modifications on the susceptibility of collagen to proteolysis. II. Dehydrothermal crosslinking.

Int J Biol Macromol. 1992-6

[8]
Non-invasive in vivo imaging of arthritis in a collagen-induced murine model with phosphatidylserine-binding near-infrared (NIR) dye.

Arthritis Res Ther. 2015-3-9

[9]
Real-Time Detection and Monitoring of Bacterial Infection Based on NIR-II Imaging.

Front Chem. 2021-6-14

[10]
Quantum dot800-poly(ethylene glycol)-c(Arg-Gly-Asp-d-Tyr-Lys)

2004

引用本文的文献

[1]
Advancements in skeletal muscle tissue engineering: strategies for repair and regeneration of skeletal muscle beyond self-repair.

Regen Biomater. 2025-5-28

[2]
Nanomaterial-assisted pancreatic cancer theranostics.

Regen Biomater. 2025-6-11

[3]
Long-term Follow-up of Remnant Capsules After Implant Removal Without Capsulectomy: An Animal Model Study.

Aesthet Surg J. 2025-8-18

[4]
dynamic visualization and evaluation of collagen degradation utilizing NIR-II fluorescence imaging in mice models.

Regen Biomater. 2025-4-11

[5]
Combining bioengineered human skin with bioprinted cartilage for ear reconstruction.

Sci Adv. 2023-10-6

[6]
NIR-II Nanoprobes: A Review of Components-Based Approaches to Next-Generation Bioimaging Probes.

Bioengineering (Basel). 2023-8-11

本文引用的文献

[1]
A regeneration process-matching scaffold with appropriate dynamic mechanical properties and spatial adaptability for ligament reconstruction.

Bioact Mater. 2021-11-12

[2]
The Incorporation of Etanercept into a Porous Tri-Layer Scaffold for Restoring and Repairing Cartilage Tissue.

Pharmaceutics. 2022-1-26

[3]
3D printed biocompatible graphene oxide, attapulgite, and collagen composite scaffolds for bone regeneration.

J Biomater Appl. 2022-5

[4]
NIR-II Ratiometric Lanthanide-Dye Hybrid Nanoprobes Doped Bioscaffolds for In Situ Bone Repair Monitoring.

Nano Lett. 2022-1-26

[5]
A Bright, Renal-Clearable NIR-II Brush Macromolecular Probe with Long Blood Circulation Time for Kidney Disease Bioimaging.

Angew Chem Int Ed Engl. 2022-1-26

[6]
Nerve Suture Combined With ADSCs Injection Under Real-Time and Dynamic NIR-II Fluorescence Imaging in Peripheral Nerve Regeneration .

Front Chem. 2021-7-14

[7]
Real-Time Detection and Monitoring of Bacterial Infection Based on NIR-II Imaging.

Front Chem. 2021-6-14

[8]
Biomaterials with Potential Use in Bone Tissue Regeneration-Collagen/Chitosan/Silk Fibroin Scaffolds Cross-Linked by EDC/NHS.

Materials (Basel). 2021-2-26

[9]
Involvement of Organic Anion Transporters in the Pharmacokinetics and Drug Interaction of Rosmarinic Acid.

Pharmaceutics. 2021-1-9

[10]
live imaging of bone using shortwave infrared fluorescent quantum dots.

Nanoscale. 2020-11-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索