Suppr超能文献

基于计算机断层扫描成像的腹主动脉瘤全自动分割深度学习方法。

Deep-learning method for fully automatic segmentation of the abdominal aortic aneurysm from computed tomography imaging.

作者信息

Abdolmanafi Atefeh, Forneris Arianna, Moore Randy D, Di Martino Elena S

机构信息

R&D Department, ViTAA Medical Solutions, Montreal, QC, Canada.

Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB, Canada.

出版信息

Front Cardiovasc Med. 2023 Jan 5;9:1040053. doi: 10.3389/fcvm.2022.1040053. eCollection 2022.

Abstract

Abdominal aortic aneurysm (AAA) is one of the leading causes of death worldwide. AAAs often remain asymptomatic until they are either close to rupturing or they cause pressure to the spine and/or other organs. Fast progression has been linked to future clinical outcomes. Therefore, a reliable and efficient system to quantify geometric properties and growth will enable better clinical prognoses for aneurysms. Different imaging systems can be used to locate and characterize an aneurysm; computed tomography (CT) is the modality of choice in many clinical centers to monitor later stages of the disease and plan surgical treatment. The lack of accurate and automated techniques to segment the outer wall and lumen of the aneurysm results in either simplified measurements that focus on few salient features or time-consuming segmentation affected by high inter- and intra-operator variability. To overcome these limitations, we propose a model for segmenting AAA tissues automatically by using a trained deep learning-based approach. The model is composed of three different steps starting with the extraction of the aorta and iliac arteries followed by the detection of the lumen and other AAA tissues. The results of the automated segmentation demonstrate very good agreement when compared to manual segmentation performed by an expert.

摘要

腹主动脉瘤(AAA)是全球主要的死亡原因之一。AAA通常无症状,直到接近破裂或对脊柱和/或其他器官造成压迫。快速进展与未来临床结果相关。因此,一个可靠且高效的系统来量化几何特性和生长情况将有助于对动脉瘤做出更好的临床预后判断。不同的成像系统可用于定位和表征动脉瘤;计算机断层扫描(CT)是许多临床中心用于监测疾病后期阶段和规划手术治疗的首选方式。缺乏准确且自动化的技术来分割动脉瘤的外壁和管腔,导致要么是侧重于少数显著特征的简化测量,要么是受操作者间和操作者内高变异性影响的耗时分割。为克服这些限制,我们提出一种通过使用基于深度学习的训练方法自动分割AAA组织的模型。该模型由三个不同步骤组成,首先是提取主动脉和髂动脉,接着是检测管腔和其他AAA组织。与专家进行的手动分割相比,自动分割的结果显示出非常好的一致性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f896/9849751/7d7a73626bb5/fcvm-09-1040053-g0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验