Suppr超能文献

基于综合生物信息学的特应性皮炎相关潜在诊断生物标志物的鉴定

Integrated bioinformatics-based identification of potential diagnostic biomarkers associated with atopic dermatitis.

作者信息

Chen Guanghua, Yan Jia

机构信息

Department of Dermatology, Children's Hospital of Chongqing Medical University, National Clinical Research Centre for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China.

Digestive Department, University-Town Hospital of Chongqing Medical University, Chongqing, China.

出版信息

Postepy Dermatol Alergol. 2022 Dec;39(6):1059-1068. doi: 10.5114/ada.2022.114899. Epub 2022 Mar 27.

Abstract

INTRODUCTION

In-depth analysis of the rambling genes of atopic dermatitis may help to identify the pathologic mechanism of this disease. However, this has seldom been performed.

AIM

Using bioinformatics approaches, we analysed 3 gene expression profiles in the gene expression omnibus (GEO) database, identified the differentially expressed genes (DEGs), and found out the overlapping DEGs (common DEGs, cDEGs) in the above 3 profiles.

MATERIAL AND METHODS

We identified 91 upregulated cDEGs, which were then arranged into a protein-protein interaction (PPI) network, and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway and Gene Ontology (GO) term enrichment analyses were performed to explore the functional roles of these genes.

RESULTS

GO analyses revealed these DEGs to be significantly enriched in biological processes including immune system process, immune response, defence response, leukocyte activation, and response to the biotic stimulus. These DEGs were also enriched in the KEGG pathway, including influenza A, amoebiasis, primary immunodeficiency, cytokine-cytokine receptor interaction, and IL-17 signalling pathway. PPI analysis showed that 9 genes (PTPRC-CTLA4-CD274-CD1C-IL7R-GZMB-CCL5-CD83, and CCL22) were probably the novel hub genes of atopic dermatitis.

CONCLUSIONS

Together, the findings of these bioinformatics analyses thus identified key hub genes associated with AD development.

摘要

引言

深入分析特应性皮炎的杂乱基因可能有助于确定该疾病的病理机制。然而,这方面的研究很少。

目的

利用生物信息学方法,我们分析了基因表达综合数据库(GEO)中的3个基因表达谱,鉴定了差异表达基因(DEG),并找出了上述3个谱中的重叠DEG(共同DEG,cDEG)。

材料与方法

我们鉴定了91个上调的cDEG,然后将它们构建成蛋白质-蛋白质相互作用(PPI)网络,并进行京都基因与基因组百科全书(KEGG)通路和基因本体论(GO)术语富集分析,以探索这些基因的功能作用。

结果

GO分析显示,这些DEG在包括免疫系统过程、免疫反应、防御反应、白细胞激活和对生物刺激的反应等生物过程中显著富集。这些DEG在KEGG通路中也有富集,包括甲型流感、阿米巴病、原发性免疫缺陷、细胞因子-细胞因子受体相互作用和IL-17信号通路。PPI分析表明,9个基因(PTPRC-CTLA4-CD27-CD1C-IL7R-GZMB-CCL5-CD83和CCL22)可能是特应性皮炎的新核心基因。

结论

总之,这些生物信息学分析的结果确定了与特应性皮炎发展相关的关键核心基因。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7643/9837587/e1d99686dee9/PDIA-39-46718-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验