Gupta Vaishali, Kumar Ela
Indira Gandhi Delhi Technical University for Women, New Delhi, India.
Artif Intell Rev. 2023 Jan 17:1-24. doi: 10.1007/s10462-022-10323-0.
The gross domestic product (GDP) of a country is mainly dependent on its trade and external sector which improves the country's income. According to FY2021-2022, India's nominal GDP is estimated to be 3.12 trillion US dollars. Overall exports and imports have a year-over-year increase of 49.6% and 68% respectively. Machine learning techniques have the potential to improve India's Current gross value by up to 15% by the year 2035. The integration of data, Technology, and talent helps to create intelligent models that enhance artificial intelligence growth. This paper presents an optimized light gradient boosting machine (Light GBM) model using the hybrid Harris hawk optimization (HO) algorithm for trade forecasting. The overfitting problem in the conventional Harris Hawk Optimization is overcome using the exclusive feature bundling (EFB) and the gradient-based one-side sampling (GOSS) methodologies. The HO optimization algorithm offers fast convergence by optimizing different lightGBM parameters such as a number of training iterations, maximum depth, minimal data in the leaf, etc. To improve the performance, one step further, the residual errors of the optimized lightGBM model are corrected using the Markov Chain model. The main aim of the optimized lightGBM model is to extract the crucial input values of certain variables such as imports and exports of goods and services, service trade, and merchandise trade and predict the price movement decision. The proposed model identifies the interrelationship with the external market and future market growth along with analyzing the variation in market conditions. The prediction decision is mainly to hold, but, or sell the stocks. When evaluated using the precious metal price forecast and stock market datasets, the proposed methodology shows that the hybrid approach can enhance the prediction performance. The results show that the input parameters were efficient in predicting the economic growth regarding the Intermarket trading system (ITS) and services with higher accuracy.
一个国家的国内生产总值(GDP)主要依赖于其贸易和对外部门,这会提高该国的收入。根据2021 - 2022财年的数据,印度的名义国内生产总值估计为3.12万亿美元。总体出口和进口同比分别增长了49.6%和68%。到2035年,机器学习技术有潜力将印度当前的总产值提高15%。数据、技术和人才的整合有助于创建增强人工智能发展的智能模型。本文提出了一种使用混合哈里斯鹰优化(HO)算法的优化轻梯度提升机(Light GBM)模型用于贸易预测。通过使用排他特征捆绑(EFB)和基于梯度的单边采样(GOSS)方法克服了传统哈里斯鹰优化中的过拟合问题。HO优化算法通过优化不同的LightGBM参数,如训练迭代次数、最大深度、叶节点中的最小数据量等,实现快速收敛。为了进一步提高性能,使用马尔可夫链模型对优化后的LightGBM模型的残差进行校正。优化后的LightGBM模型的主要目的是提取某些变量的关键输入值,如商品和服务的进出口、服务贸易和商品贸易,并预测价格变动决策。所提出的模型识别与外部市场和未来市场增长的相互关系,同时分析市场条件的变化。预测决策主要是持有、买入或卖出股票。当使用贵金属价格预测和股票市场数据集进行评估时,所提出的方法表明这种混合方法可以提高预测性能。结果表明,输入参数在预测跨市场交易系统(ITS)和服务的经济增长方面具有更高的准确性,是有效的。