Hammoudi Karim, Cabani Adnane, Slika Bouthaina, Benhabiles Halim, Dornaika Fadi, Melkemi Mahmoud
IRIMAS, Université de Haute-Alsace, Mulhouse, France.
Université de Strasbourg, Strasbourg, France.
J Healthc Inform Res. 2023 Jan 13;6(4):442-460. doi: 10.1007/s41666-022-00122-1. eCollection 2022 Dec.
A novel approach of data augmentation based on irregular superpixel decomposition is proposed. This approach called SuperpixelGridMasks permits to extend original image datasets that are required by training stages of machine learning-related analysis architectures towards increasing their performances. Three variants named , , and are presented. These grid-based methods produce a new style of image transformations using the dropping and fusing of information. Extensive experiments using various image classification models as well as precision health and surrounding real-world datasets show that baseline performances can be significantly outperformed using our methods. The comparative study also shows that our methods can overpass the performances of other data augmentations. , , and codes are publicly available at https://github.com/hammoudiproject/SuperpixelGridMasks.
提出了一种基于不规则超像素分解的数据增强新方法。这种称为SuperpixelGridMasks的方法允许扩展机器学习相关分析架构训练阶段所需的原始图像数据集,以提高其性能。提出了三种名为 、 和 的变体。这些基于网格的方法通过信息的丢弃和融合产生了一种新的图像变换风格。使用各种图像分类模型以及精准健康和周围现实世界数据集进行的广泛实验表明,使用我们的方法可以显著超越基线性能。比较研究还表明,我们的方法可以超越其他数据增强方法的性能。 、 和 的代码可在https://github.com/hammoudiproject/SuperpixelGridMasks上公开获取。