University of the Basque Country UPV/EHU, San Sebastian, Spain.
Lebanese International University, Beirut, Lebanon.
Med Biol Eng Comput. 2024 Aug;62(8):2389-2407. doi: 10.1007/s11517-024-03066-3. Epub 2024 Apr 9.
To create robust and adaptable methods for lung pneumonia diagnosis and the assessment of its severity using chest X-rays (CXR), access to well-curated, extensive datasets is crucial. Many current severity quantification approaches require resource-intensive training for optimal results. Healthcare practitioners require efficient computational tools to swiftly identify COVID-19 cases and predict the severity of the condition. In this research, we introduce a novel image augmentation scheme as well as a neural network model founded on Vision Transformers (ViT) with a small number of trainable parameters for quantifying COVID-19 severity and other lung diseases. Our method, named Vision Transformer Regressor Infection Prediction (ViTReg-IP), leverages a ViT architecture and a regression head. To assess the model's adaptability, we evaluate its performance on diverse chest radiograph datasets from various open sources. We conduct a comparative analysis against several competing deep learning methods. Our results achieved a minimum Mean Absolute Error (MAE) of 0.569 and 0.512 and a maximum Pearson Correlation Coefficient (PC) of 0.923 and 0.855 for the geographic extent score and the lung opacity score, respectively, when the CXRs from the RALO dataset were used in training. The experimental results reveal that our model delivers exceptional performance in severity quantification while maintaining robust generalizability, all with relatively modest computational requirements. The source codes used in our work are publicly available at https://github.com/bouthainas/ViTReg-IP .
为了使用胸部 X 光(CXR)创建强大且适应性强的肺肺炎诊断和严重程度评估方法,获取精心策划、广泛的数据集至关重要。许多当前的严重程度量化方法需要资源密集型的培训才能获得最佳结果。医疗保健从业者需要高效的计算工具来快速识别 COVID-19 病例并预测病情的严重程度。在这项研究中,我们引入了一种新的图像增强方案以及一种基于 Vision Transformers(ViT)的神经网络模型,该模型具有少量可训练参数,用于量化 COVID-19 的严重程度和其他肺部疾病。我们的方法名为 Vision Transformer Regressor Infection Prediction(ViTReg-IP),利用 ViT 架构和回归头。为了评估模型的适应性,我们在来自各种开源的不同胸部射线照片数据集上评估其性能。我们对几种竞争的深度学习方法进行了比较分析。当 RALO 数据集的 CXR 用于训练时,我们的方法在地理范围得分和肺不透明度得分上分别实现了最低平均绝对误差(MAE)为 0.569 和 0.512 以及最大 Pearson 相关系数(PC)为 0.923 和 0.855。实验结果表明,我们的模型在保持强大的泛化能力的同时,在严重程度量化方面表现出色,所有这些都需要相对较小的计算要求。我们工作中使用的源代码可在 https://github.com/bouthainas/ViTReg-IP 上公开获取。