Suppr超能文献

通过组合方法推进模型生物催化剂 IGTS8 中的脱硫。

Advancing Desulfurization in the Model Biocatalyst IGTS8 via an Combinatorial Approach.

机构信息

Enzyme and Microbial Biotechnology Unit, Department of Biology, National and Kapodistrian University of Athens, Attica, Greece.

Biotechnology Laboratory, Sector of Synthesis and Development of Industrial Processes (IV), School of Chemical Engineering, National Technical University of Athens, Athens, Greece.

出版信息

Appl Environ Microbiol. 2023 Feb 28;89(2):e0197022. doi: 10.1128/aem.01970-22. Epub 2023 Jan 23.

Abstract

Biodesulfurization poses as an ideal replacement to the high cost hydrodesulfurization of the recalcitrant heterocyclic sulfur compounds, such as dibenzothiophene (DBT) and its derivatives. The increasingly stringent limits on fuel sulfur content intensify the need for improved desulfurization biocatalysts, without sacrificing the calorific value of the fuel. Selective sulfur removal in a wide range of biodesulfurization strains, as well as in the model biocatalyst Rhodococcus qingshengii IGTS8, occurs via the 4S metabolic pathway that involves the operon, which encodes enzymes that catalyze the generation of 2-hydroxybiphenyl and sulfite from DBT. Here, using a homologous recombination process, we generate two recombinant IGTS8 biocatalysts, harboring native or rearranged, nonrepressible desulfurization operons, within the native locus. The alleviation of sulfate-, methionine-, and cysteine-mediated repression is achieved through the exchange of the native promoter , with the nonrepressible promoter. The Dsz-mediated desulfurization from DBT was monitored at three growth phases, through HPLC analysis of end product levels. Notably, an 86-fold enhancement of desulfurization activity was documented in the presence of selected repressive sulfur sources for the recombinant biocatalyst harboring a combination of three targeted genetic modifications, namely, a operon rearrangement, a native promoter exchange, and a overlap removal. In addition, transcript level comparison highlighted the diverse effects of our genetic engineering approaches on mRNA ratios and revealed a gene-specific differential increase in mRNA levels. is perhaps the most promising biodesulfurization genus and is able to withstand the harsh process conditions of a biphasic biodesulfurization process. In the present work, we constructed an advanced biocatalyst harboring a combination of three genetic modifications, namely, an operon rearrangement, a promoter exchange, and a gene overlap removal. Our homologous recombination approach generated stable biocatalysts that do not require antibiotic addition, while harboring nonrepressible desulfurization operons that present very high biodesulfurization activities and are produced in simple and low-cost media. In addition, transcript level quantification validated the effects of our genetic engineering approaches on recombinant strains' mRNA ratios and revealed a gene-specific differential increase in mRNA levels. Based on these findings, the present work can pave the way for further strain and process optimization studies that could eventually lead to an economically viable biodesulfurization process.

摘要

生物脱硫作为一种理想的替代方法,可以取代成本高昂的加氢脱硫工艺,用于处理难以处理的杂环硫化合物,如二苯并噻吩(DBT)及其衍生物。燃料含硫量的限制日益严格,这加剧了对改进脱硫生物催化剂的需求,同时又不牺牲燃料的热值。在广泛的生物脱硫菌株中,以及在模型生物催化剂 Rhodococcus qingshengii IGTS8 中,选择性硫去除是通过 4S 代谢途径进行的,该途径涉及 操纵子,该操纵子编码将 DBT 转化为 2-羟基联苯和亚硫酸盐的酶。在这里,我们使用同源重组过程,在天然 基因座内生成了两个携带天然或重排的、不可抑制的脱硫操纵子的重组 IGTS8 生物催化剂。通过交换天然启动子 与不可抑制的启动子 ,实现了硫酸盐、蛋氨酸和半胱氨酸介导的 抑制的缓解。通过高效液相色谱法分析终产物水平,监测了 DBT 介导的 Dsz 脱硫作用。值得注意的是,在存在选定的抑制性硫源的情况下,携带三种靶向遗传修饰的组合(即操纵子重排、天然启动子交换和 重叠去除)的重组生物催化剂的脱硫活性提高了 86 倍。此外,转录水平比较突出了我们遗传工程方法对 mRNA 比值的不同影响,并揭示了基因特异性的 mRNA 水平差异增加。 Rhodococcus 可能是最有前途的生物脱硫属,能够承受两相生物脱硫过程的苛刻工艺条件。在本工作中,我们构建了一个携带三种遗传修饰组合(即操纵子重排、启动子交换和基因重叠去除)的先进生物催化剂。我们的同源重组方法生成了不需要添加抗生素的稳定生物催化剂,同时携带不可抑制的脱硫操纵子,这些操纵子具有非常高的生物脱硫活性,并在简单且低成本的培养基中产生。此外,转录水平定量验证了我们的遗传工程方法对重组菌株 mRNA 比值的影响,并揭示了基因特异性的 mRNA 水平差异增加。基于这些发现,本工作为进一步的菌株和工艺优化研究铺平了道路,最终可能导致经济可行的生物脱硫工艺。

相似文献

本文引用的文献

6
Regulation of mRNA Stability During Bacterial Stress Responses.细菌应激反应期间mRNA稳定性的调控
Front Microbiol. 2020 Sep 9;11:2111. doi: 10.3389/fmicb.2020.02111. eCollection 2020.
7
Functionally uncoupled transcription-translation in Bacillus subtilis.枯草芽孢杆菌中功能解偶联的转录-翻译。
Nature. 2020 Sep;585(7823):124-128. doi: 10.1038/s41586-020-2638-5. Epub 2020 Aug 26.
10
Engineering of an oleaginous bacterium for the production of fatty acids and fuels.工程菌生产脂肪酸和燃料。
Nat Chem Biol. 2019 Jul;15(7):721-729. doi: 10.1038/s41589-019-0295-5. Epub 2019 Jun 17.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验