Suppr超能文献

通过对来自西班牙的 633330 名个体的合并症聚类对骨关节炎患者进行分类。

Classification of patients with osteoarthritis through clusters of comorbidities using 633 330 individuals from Spain.

机构信息

Centre for Statistics in Medicine, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, UK.

Clinical Epidemiology Unit, Department of Clinical Sciences Lund, Orthopedics, Lund University, Lund, Sweden.

出版信息

Rheumatology (Oxford). 2023 Nov 2;62(11):3592-3600. doi: 10.1093/rheumatology/kead038.

Abstract

OBJECTIVES

To explore clustering of comorbidities among patients with a new diagnosis of OA and estimate the 10-year mortality risk for each identified cluster.

METHODS

This is a population-based cohort study of individuals with first incident diagnosis of OA of the hip, knee, ankle/foot, wrist/hand or 'unspecified' site between 2006 and 2020, using SIDIAP (a primary care database representative of Catalonia, Spain). At the time of OA diagnosis, conditions associated with OA in the literature that were found in ≥1% of the individuals (n = 35) were fitted into two cluster algorithms, k-means and latent class analysis. Models were assessed using a range of internal and external evaluation procedures. Mortality risk of the obtained clusters was assessed by survival analysis using Cox proportional hazards.

RESULTS

We identified 633 330 patients with a diagnosis of OA. Our proposed best solution used latent class analysis to identify four clusters: 'low-morbidity' (relatively low number of comorbidities), 'back/neck pain plus mental health', 'metabolic syndrome' and 'multimorbidity' (higher prevalence of all studied comorbidities). Compared with the 'low-morbidity' cluster, the 'multimorbidity' cluster had the highest risk of 10-year mortality (adjusted hazard ratio [HR]: 2.19 [95% CI: 2.15, 2.23]), followed by the 'metabolic syndrome' cluster (adjusted HR: 1.24 [95% CI: 1.22, 1.27]) and the 'back/neck pain plus mental health' cluster (adjusted HR: 1.12 [95% CI: 1.09, 1.15]).

CONCLUSION

Patients with a new diagnosis of OA can be clustered into groups based on their comorbidity profile, with significant differences in 10-year mortality risk. Further research is required to understand the interplay between OA and particular comorbidity groups, and the clinical significance of such results.

摘要

目的

探讨新诊断为骨关节炎(OA)患者共病的聚类情况,并估计每个识别出的聚类的 10 年死亡率风险。

方法

这是一项基于人群的队列研究,纳入了 2006 年至 2020 年间首次诊断为髋、膝、踝/足、腕/手或“未特指”部位 OA 的个体,使用 SIDIAP(一个代表西班牙加泰罗尼亚的初级保健数据库)。在 OA 诊断时,将文献中与 OA 相关的、在≥1%的个体中发现的与 OA 相关的疾病(n=35)纳入两种聚类算法,即 k-均值和潜在类别分析。使用一系列内部和外部评估程序评估模型。通过使用 Cox 比例风险生存分析评估获得的聚类的死亡率风险。

结果

我们共确定了 633330 名 OA 诊断患者。我们提出的最佳解决方案使用潜在类别分析识别出 4 个聚类:“低合并症”(相对较少的合并症)、“腰背/颈部疼痛加心理健康”、“代谢综合征”和“多种合并症”(所有研究共病的患病率较高)。与“低合并症”聚类相比,“多种合并症”聚类的 10 年死亡率风险最高(校正后的危险比[HR]:2.19[95%CI:2.15,2.23]),其次是“代谢综合征”聚类(校正后的 HR:1.24[95%CI:1.22,1.27])和“腰背/颈部疼痛加心理健康”聚类(校正后的 HR:1.12[95%CI:1.09,1.15])。

结论

新诊断为 OA 的患者可以根据其共病谱进行聚类,10 年死亡率风险存在显著差异。需要进一步研究以了解 OA 与特定共病组之间的相互作用以及此类结果的临床意义。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dafe/10629784/50f09185dfd1/kead038f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验