Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, 48201, USA.
Redox Biol. 2023 Apr;60:102613. doi: 10.1016/j.redox.2023.102613. Epub 2023 Jan 18.
Nicotinamide adenine dinucleotide phosphate (NADP), a co-enzyme and an electron carrier, plays crucial roles in numerous biological functions, including cellular metabolism and antioxidation. Because NADP is subcellular-membrane impermeable, eukaryotes compartmentalize NAD kinases (NADKs), the NADP biosynthetic enzymes. Mitochondria are fundamental organelles for energy production through oxidative phosphorylation. Ten years after the discovery of the mitochondrial NADK (known as MNADK or NADK2), a significant amount of knowledge has been obtained regarding its functions, mechanism of action, human biology, mouse models, crystal structures, and post-translation modifications. NADK2 phosphorylates NAD(H) to generate mitochondrial NADP(H). NADK2-deficient patients suffered from hyperlysinemia, elevated plasma C10:2-carnitine (due to the inactivity of relevant NADP-dependent enzymes), and neuronal development defects. Nadk2-deficient mice recapitulate key features of NADK2-deficient patients, including metabolic and neuronal abnormalities. Crystal structures of human NADK2 show a dimer, with the NADP-binding site located at the dimer interface. NADK2 activity is highly regulated by post-translational modifications, including S188 phosphorylation, K76 and K304 acetylation, and C193 S-nitrosylation; mutations in each site affect NADK2 activity and function. In mice, hepatic Nadk2 functions as a major metabolic regulator upon increased energy demands by regulating sirtuin 3 activity and fatty acid oxidation. Hopefully, future research on NADK2 will not only elucidate its functional roles in health and disease but will also pave the way for novel therapeutics for both rare and common diseases, including NADK2 deficiency and metabolic syndrome.
烟酰胺腺嘌呤二核苷酸磷酸(NADP),一种辅酶和电子载体,在许多生物功能中发挥着关键作用,包括细胞代谢和抗氧化作用。由于 NADP 不能透过细胞膜,真核生物将 NAD 激酶(NADK),即 NADP 生物合成酶,分隔在细胞器中。线粒体是通过氧化磷酸化产生能量的基本细胞器。线粒体 NADK(称为 MNADK 或 NADK2)发现十年后,人们对其功能、作用机制、人类生物学、小鼠模型、晶体结构和翻译后修饰有了大量的了解。NADK2 将 NAD(H)磷酸化为线粒体 NADP(H)。NADK2 缺陷患者患有高赖氨酸血症,血浆 C10:2-肉碱升高(由于相关 NADP 依赖性酶失活),以及神经元发育缺陷。Nadk2 缺陷小鼠重现了 NADK2 缺陷患者的关键特征,包括代谢和神经元异常。人 NADK2 的晶体结构显示出二聚体,NADP 结合位点位于二聚体界面。NADK2 活性受到翻译后修饰的高度调节,包括 S188 磷酸化、K76 和 K304 乙酰化以及 C193 S-亚硝化;每个位点的突变都会影响 NADK2 的活性和功能。在小鼠中,肝 Nadk2 通过调节 Sirtuin 3 活性和脂肪酸氧化来作为主要的代谢调节剂,以满足增加的能量需求。希望未来对 NADK2 的研究不仅能阐明其在健康和疾病中的功能作用,还能为包括 NADK2 缺乏症和代谢综合征在内的罕见和常见疾病的新型治疗方法铺平道路。