Suppr超能文献

严重急性呼吸系统综合征冠状病毒导致线粒体功能障碍:对新冠病毒感染后并发症的影响。

Severe acute respiratory syndrome coronaviruses contributing to mitochondrial dysfunction: Implications for post-COVID complications.

机构信息

Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.

Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Karnataka, 576106, Manipal, India.

出版信息

Mitochondrion. 2023 Mar;69:43-56. doi: 10.1016/j.mito.2023.01.005. Epub 2023 Jan 20.

Abstract

Mitochondria play a central role in oxidative phosphorylation (OXPHOS), bioenergetics linked with ATP production, fatty acids biosynthesis, calcium signaling, cell cycle regulation, apoptosis, and innate immune response. Severe acute respiratory syndrome-associated coronavirus (SARS-CoV) infection manipulates the host cellular machinery for its survival and replication in the host cell. The infectiaon causes perturbed the cellular metabolism that favours viral replication leading to mitochondrial dysfunction and chronic inflammation. By localizing to the mitochondria, SARS CoV proteins increase reactive oxygen species (ROS) levels, perturbation of Ca signaling, changes in mtDNA copy number, mitochondrial membrane potential (MMP), mitochondrial mass, and induction of mitophagy. These proteins also influence the fusion and fission kinetics, size, structure, and distribution of mitochondria in the infected host cells. This results in compromised bioenergetics, altered metabolism, and innate immune signaling, and hence can be a key player in determining the outcome of SARS-CoV infection. SARS-CoV infection contributes to stress and activates apoptotic pathways. This review summarizes how mitochondrial function and dynamics are affected by SARS-CoV and how the mitochondria-SARS-CoV interaction benefits viral survival and growth by evading innate host immunity. We also highlight how the SARS-CoV-mediated mitochondrial dysfunction contributes to post-COVID complications. Besides, a discussion on targeting virus-mitochondria interactions as a therapeutic strategy is presented.

摘要

线粒体在氧化磷酸化(OXPHOS)中发挥核心作用,与 ATP 生成、脂肪酸生物合成、钙信号、细胞周期调控、细胞凋亡和固有免疫反应相关的生物能量。严重急性呼吸综合征相关冠状病毒(SARS-CoV)感染操纵宿主细胞机制,以在宿主细胞中生存和复制。这种感染会扰乱细胞代谢,有利于病毒复制,导致线粒体功能障碍和慢性炎症。SARS-CoV 蛋白通过定位于线粒体,增加活性氧(ROS)水平,破坏 Ca 信号,改变 mtDNA 拷贝数、线粒体膜电位(MMP)、线粒体质量,并诱导线粒体自噬。这些蛋白质还影响融合和裂变动力学、线粒体在感染宿主细胞中的大小、结构和分布。这导致生物能量受损、代谢改变和固有免疫信号转导,因此可能是决定 SARS-CoV 感染结局的关键因素。SARS-CoV 感染会导致应激和激活细胞凋亡途径。本综述总结了 SARS-CoV 如何影响线粒体功能和动力学,以及线粒体-SARS-CoV 相互作用如何通过逃避固有宿主免疫来促进病毒的生存和生长。我们还强调了 SARS-CoV 介导的线粒体功能障碍如何导致 COVID-19 后并发症。此外,还讨论了将病毒-线粒体相互作用作为治疗策略的靶向。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d9ee/9854144/3d3c93c143da/gr1_lrg.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验