Department of Life Sciences and Systems Biology & Molecular Biotechnology Center - MBC, Università di Torino, Via Nizza 52, 10126, Torino, Italy.
Italian Institute for Genomic Medicine (IIGM), Sp142 Km 3.95, 10060, Candiolo, Torino, Italy.
Nat Commun. 2023 Jan 23;14(1):367. doi: 10.1038/s41467-023-35938-x.
The correct establishment of DNA methylation patterns during mouse early development is essential for cell fate specification. However, the molecular targets as well as the mechanisms that determine the specificity of the de novo methylation machinery during differentiation are not completely elucidated. Here we show that the DNMT3B-dependent DNA methylation of key developmental regulatory regions at epiblast-like cells (EpiLCs) provides an epigenetic priming that ensures flawless commitment at later stages. Using in vitro stem cell differentiation and loss of function experiments combined with high-throughput genome-wide bisulfite-, bulk-, and single cell RNA-sequencing we dissected the specific role of DNMT3B in cell fate. We identify DNMT3B-dependent regulatory elements on the genome which, in Dnmt3b knockout (3BKO), impair the differentiation into meso-endodermal (ME) progenitors and redirect EpiLCs towards the neuro-ectodermal lineages. Moreover, ectopic expression of DNMT3B in 3BKO re-establishes the DNA methylation of the master regulator Sox2 super-enhancer, downmodulates its expression, and restores the expression of ME markers. Taken together, our data reveal that DNMT3B-dependent methylation at the epiblast stage is essential for the priming of the meso-endodermal lineages and provide functional characterization of the de novo DNMTs during EpiLCs lineage determination.
在小鼠早期发育过程中正确建立 DNA 甲基化模式对于细胞命运特化至关重要。然而,决定分化过程中新甲基化机制特异性的分子靶标以及机制尚未完全阐明。在这里,我们表明,DNMT3B 依赖性的类胚胎细胞(EpiLCs)中关键发育调控区域的 DNA 甲基化提供了一种表观遗传启动,确保了在后期的完美特化。我们通过体外干细胞分化和功能丧失实验,并结合高通量全基因组亚硫酸氢盐测序、批量和单细胞 RNA-seq,剖析了 DNMT3B 在细胞命运中的特定作用。我们在基因组上确定了 DNMT3B 依赖性的调控元件,在 Dnmt3b 敲除(3BKO)中,这些元件损害了向中内胚层(ME)祖细胞的分化,并将 EpiLCs 重定向到神经外胚层谱系。此外,在 3BKO 中转染 DNMT3B 可重新建立主调控因子 Sox2 超级增强子的 DNA 甲基化,下调其表达,并恢复 ME 标记物的表达。总之,我们的数据表明,胚胎阶段的 DNMT3B 依赖性甲基化对于中内胚层谱系的启动至关重要,并为 EpiLCs 谱系决定过程中从头甲基转移酶的功能特征提供了证据。