Suppr超能文献

海洋变形菌和嗜盐古菌中的新型 D-谷氨酸分解代谢途径。

Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea.

机构信息

State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.

College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.

出版信息

ISME J. 2023 Apr;17(4):537-548. doi: 10.1038/s41396-023-01364-6. Epub 2023 Jan 23.

Abstract

D-glutamate (D-Glu) is an essential component of bacterial peptidoglycans, representing an important, yet overlooked, pool of organic matter in global oceans. However, little is known on D-Glu catabolism by marine microorganisms. Here, a novel catabolic pathway for D-Glu was identified using the marine bacterium Pseudoalteromonas sp. CF6-2 as the model. Two novel enzymes (DgcN, DgcA), together with a transcriptional regulator DgcR, are crucial for D-Glu catabolism in strain CF6-2. Genetic and biochemical data confirm that DgcN is a N-acetyltransferase which catalyzes the formation of N-acetyl-D-Glu from D-Glu. DgcA is a racemase that converts N-acetyl-D-Glu to N-acetyl-L-Glu, which is further hydrolyzed to L-Glu. DgcR positively regulates the transcription of dgcN and dgcA. Structural and biochemical analyses suggested that DgcN and its homologs, which use D-Glu as the acyl receptor, represent a new group of the general control non-repressible 5 (GCN5)-related N-acetyltransferases (GNAT) superfamily. DgcA and DgcN occur widely in marine bacteria (particularly Rhodobacterales) and halophilic archaea (Halobacteria) and are abundant in marine and hypersaline metagenome datasets. Thus, this study reveals a novel D-Glu catabolic pathway in ecologically important marine bacteria and halophilic archaea and helps better understand the catabolism and recycling of D-Glu in these ecosystems.

摘要

D-谷氨酸(D-Glu)是细菌肽聚糖的重要组成部分,代表了全球海洋中重要但被忽视的有机物质来源。然而,海洋微生物对 D-Glu 的代谢途径知之甚少。本研究以海洋细菌 Pseudoalteromonas sp. CF6-2 为模型,发现了一种新型 D-Glu 代谢途径。两种新型酶(DgcN、DgcA)和一个转录调节因子 DgcR,对于 CF6-2 菌株中的 D-Glu 代谢至关重要。遗传和生化数据证实,DgcN 是一种 N-乙酰基转移酶,可催化 D-Glu 形成 N-乙酰-D-Glu。DgcA 是一种消旋酶,可将 N-乙酰-D-Glu 转化为 N-乙酰-L-Glu,进一步水解为 L-Glu。DgcR 正向调节 dgcN 和 dgcA 的转录。结构和生化分析表明,DgcN 及其同源物(以 D-Glu 为酰基受体)代表了新的 GCN5 相关 N-乙酰转移酶(GNAT)超家族的一般控制非阻遏 5(GCN5)相关 N-乙酰基转移酶(GNAT)家族。DgcA 和 DgcN 广泛存在于海洋细菌(特别是红杆菌目)和嗜盐古菌(盐杆菌)中,在海洋和高盐度宏基因组数据集中丰富存在。因此,本研究揭示了生态重要的海洋细菌和嗜盐古菌中的一种新型 D-Glu 代谢途径,有助于更好地理解这些生态系统中 D-Glu 的代谢和循环。

相似文献

1
Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea.
ISME J. 2023 Apr;17(4):537-548. doi: 10.1038/s41396-023-01364-6. Epub 2023 Jan 23.
2
d-Alanine Metabolism via d-Ala Aminotransferase by a Marine Gammaproteobacterium, sp. Strain CF6-2.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0221921. doi: 10.1128/AEM.02219-21. Epub 2021 Nov 24.
3
Biodegradation of organic pollutants by halophilic bacteria and archaea.
J Mol Microbiol Biotechnol. 2008;15(2-3):74-92. doi: 10.1159/000121323. Epub 2008 Jul 28.
4
Evidences of aromatic degradation dominantly via the phenylacetic acid pathway in marine benthic Thermoprofundales.
Environ Microbiol. 2020 Jan;22(1):329-342. doi: 10.1111/1462-2920.14850. Epub 2019 Nov 22.
5
Novel Insights into Dimethylsulfoniopropionate Catabolism by Cultivable Bacteria in the Arctic Kongsfjorden.
Appl Environ Microbiol. 2022 Jan 25;88(2):e0180621. doi: 10.1128/AEM.01806-21. Epub 2021 Nov 17.
8
Diversity of cultivable halophilic archaea and bacteria from superficial hypersaline sediments of Tunisian solar salterns.
Antonie Van Leeuwenhoek. 2014 Oct;106(4):675-92. doi: 10.1007/s10482-014-0238-9. Epub 2014 Jul 27.
9
Cultivation of halophilic archaea (class ) from thalassohaline and athalassohaline environments.
Mar Life Sci Technol. 2021 Jan 11;3(2):243-251. doi: 10.1007/s42995-020-00087-3. eCollection 2021 May.
10
Enzymatic properties and physiological function of glutamate racemase from Thermus thermophilus.
Biochim Biophys Acta Proteins Proteom. 2020 Sep;1868(9):140461. doi: 10.1016/j.bbapap.2020.140461. Epub 2020 May 28.

引用本文的文献

3
-4-hydroxy-L-proline catabolism by in the ocean.
Mar Life Sci Technol. 2025 Jan 10;7(1):187-202. doi: 10.1007/s42995-024-00272-8. eCollection 2025 Feb.

本文引用的文献

1
Impact of MtrA on phosphate metabolism genes and the response to altered phosphate conditions in Streptomyces.
Environ Microbiol. 2021 Nov;23(11):6907-6923. doi: 10.1111/1462-2920.15719. Epub 2021 Aug 17.
3
A LysR-type transcriptional regulator controls the expression of numerous small RNAs in Agrobacterium tumefaciens.
Mol Microbiol. 2021 Jul;116(1):126-139. doi: 10.1111/mmi.14695. Epub 2021 Mar 2.
5
Classification and phylogeny for the annotation of novel eukaryotic GNAT acetyltransferases.
PLoS Comput Biol. 2020 Dec 23;16(12):e1007988. doi: 10.1371/journal.pcbi.1007988. eCollection 2020 Dec.
6
7
Diversity of D-Amino Acid Utilizing Bacteria From Kongsfjorden, Arctic and the Metabolic Pathways for Seven D-Amino Acids.
Front Microbiol. 2020 Jan 10;10:2983. doi: 10.3389/fmicb.2019.02983. eCollection 2019.
8
A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria.
Nat Commun. 2020 Jan 15;11(1):285. doi: 10.1038/s41467-019-14133-x.
9
A Novel PLP-Dependent Alanine/Serine Racemase From the Hyperthermophilic Archaeon OT-3.
Front Microbiol. 2018 Jul 9;9:1481. doi: 10.3389/fmicb.2018.01481. eCollection 2018.
10
Clinically Distinct Phenotypes of Canavan Disease Correlate with Residual Aspartoacylase Enzyme Activity.
Hum Mutat. 2017 May;38(5):524-531. doi: 10.1002/humu.23181. Epub 2017 Feb 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验