Suppr超能文献

海洋γ-变形杆菌 CF6-2 中通过 d-Ala 氨基转移酶的 d-丙氨酸代谢。

d-Alanine Metabolism via d-Ala Aminotransferase by a Marine Gammaproteobacterium, sp. Strain CF6-2.

机构信息

State Key Laboratory of Microbial Technology and Marine Biotechnology Research Center, Shandong Universitygrid.27255.37, Qingdao, China.

College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of Chinagrid.4422.0, Qingdao, China.

出版信息

Appl Environ Microbiol. 2022 Feb 8;88(3):e0221921. doi: 10.1128/AEM.02219-21. Epub 2021 Nov 24.

Abstract

As the most abundant d-amino acid (DAA) in the ocean, d-alanine (d-Ala) is a key component of peptidoglycan in the bacterial cell wall. However, the underlying mechanisms of bacterial metabolization of d-Ala through the microbial food web remain largely unknown. In this study, the metabolism of d-Ala by marine bacterium sp. strain CF6-2 was investigated. Based on genomic, transcriptional, and biochemical analyses combined with gene knockout, d-Ala aminotransferase was found to be indispensable for the catabolism of d-Ala in strain CF6-2. Investigation on other marine bacteria also showed that d-Ala aminotransferase gene is a reliable indicator for their ability to utilize d-Ala. Bioinformatic investigation revealed that d-Ala aminotransferase sequences are prevalent in genomes of marine bacteria and metagenomes, especially in seawater samples, and represents the predominant group containing d-Ala aminotransferase. Thus, is likely the dominant group to utilize d-Ala via d-Ala aminotransferase to drive the recycling and mineralization of d-Ala in the ocean. As the most abundant d-amino acid in the ocean, d-Ala is a component of the marine DON (dissolved organic nitrogen) pool. However, the underlying mechanism of bacterial metabolization of d-Ala to drive the recycling and mineralization of d-Ala in the ocean is still largely unknown. The results in this study showed that d-Ala aminotransferase is specific and indispensable for d-Ala catabolism in marine bacteria and that marine bacteria containing d-Ala aminotransferase genes are predominantly widely distributed in global oceans. This study reveals marine d-Ala-utilizing bacteria and the mechanism of their metabolization of d-Ala. The results shed light on the mechanisms of recycling and mineralization of d-Ala driven by bacteria in the ocean, which are helpful in understanding oceanic microbial-mediated nitrogen cycle.

摘要

作为海洋中最丰富的 D-氨基酸(DAA),D-丙氨酸(d-Ala)是细菌细胞壁肽聚糖的关键组成部分。然而,通过微生物食物网,细菌对 d-Ala 代谢的潜在机制在很大程度上仍然未知。在这项研究中,对海洋细菌 sp. strain CF6-2 对 d-Ala 的代谢进行了研究。基于基因组、转录组和生化分析以及基因敲除,发现 d-丙氨酸氨基转移酶对于 CF6-2 菌株中 d-Ala 的分解代谢是必不可少的。对其他海洋细菌的研究也表明,d-丙氨酸氨基转移酶基因是其利用 d-Ala 的能力的可靠指标。生物信息学研究表明,d-丙氨酸氨基转移酶序列在海洋细菌和宏基因组中普遍存在,特别是在海水样本中,并且代表了含有 d-丙氨酸氨基转移酶的主要组。因此,通过 d-丙氨酸氨基转移酶利用 d-Ala 的细菌可能是海洋中通过 d-丙氨酸氨基转移酶驱动 d-Ala 再循环和矿化的主要群体。

作为海洋中最丰富的 D-氨基酸,d-Ala 是海洋 DON(溶解有机氮)库的组成部分。然而,细菌代谢 d-Ala 以驱动海洋中 d-Ala 再循环和矿化的潜在机制在很大程度上仍然未知。本研究结果表明,d-丙氨酸氨基转移酶是海洋细菌 d-Ala 分解代谢的特异性和必不可少的,并且含有 d-丙氨酸氨基转移酶基因的海洋细菌广泛分布于全球海洋中。本研究揭示了海洋中利用 d-Ala 的细菌及其代谢 d-Ala 的机制。研究结果揭示了海洋细菌驱动的 d-Ala 再循环和矿化的机制,有助于理解海洋微生物介导的氮循环。

相似文献

1
d-Alanine Metabolism via d-Ala Aminotransferase by a Marine Gammaproteobacterium, sp. Strain CF6-2.
Appl Environ Microbiol. 2022 Feb 8;88(3):e0221921. doi: 10.1128/AEM.02219-21. Epub 2021 Nov 24.
2
ι-Carrageenan catabolism is initiated by key sulfatases in the marine bacterium LL1.
Appl Environ Microbiol. 2024 Jul 24;90(7):e0025524. doi: 10.1128/aem.00255-24. Epub 2024 Jun 14.
3
Diversity of D-Amino Acid Utilizing Bacteria From Kongsfjorden, Arctic and the Metabolic Pathways for Seven D-Amino Acids.
Front Microbiol. 2020 Jan 10;10:2983. doi: 10.3389/fmicb.2019.02983. eCollection 2019.
5
A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria.
Nat Commun. 2020 Jan 15;11(1):285. doi: 10.1038/s41467-019-14133-x.
6
Diaminopimelic Acid Metabolism by in the Ocean.
Microbiol Spectr. 2022 Oct 26;10(5):e0069122. doi: 10.1128/spectrum.00691-22. Epub 2022 Aug 30.
7
Novel D-glutamate catabolic pathway in marine Proteobacteria and halophilic archaea.
ISME J. 2023 Apr;17(4):537-548. doi: 10.1038/s41396-023-01364-6. Epub 2023 Jan 23.
9
Evidence for archaeal metabolism of D-amino acids in the deep marine sediments.
Sci Total Environ. 2024 Oct 20;948:174723. doi: 10.1016/j.scitotenv.2024.174723. Epub 2024 Jul 11.

引用本文的文献

2
-4-hydroxy-L-proline catabolism by in the ocean.
Mar Life Sci Technol. 2025 Jan 10;7(1):187-202. doi: 10.1007/s42995-024-00272-8. eCollection 2025 Feb.
3
Genomic diversity and ecological distribution of marine phages.
Mar Life Sci Technol. 2023 Jan 20;5(2):271-285. doi: 10.1007/s42995-022-00160-z. eCollection 2023 May.

本文引用的文献

1
Diversity of D-Amino Acid Utilizing Bacteria From Kongsfjorden, Arctic and the Metabolic Pathways for Seven D-Amino Acids.
Front Microbiol. 2020 Jan 10;10:2983. doi: 10.3389/fmicb.2019.02983. eCollection 2019.
2
A predator-prey interaction between a marine Pseudoalteromonas sp. and Gram-positive bacteria.
Nat Commun. 2020 Jan 15;11(1):285. doi: 10.1038/s41467-019-14133-x.
3
The PRIDE database and related tools and resources in 2019: improving support for quantification data.
Nucleic Acids Res. 2019 Jan 8;47(D1):D442-D450. doi: 10.1093/nar/gky1106.
4
Enantioselective Utilization of D-Amino Acids by Deep-Sea Microorganisms.
Front Microbiol. 2016 Apr 19;7:511. doi: 10.3389/fmicb.2016.00511. eCollection 2016.
5
Development of an efficient conjugation-based genetic manipulation system for Pseudoalteromonas.
Microb Cell Fact. 2015 Jan 23;14:11. doi: 10.1186/s12934-015-0194-8.
6
Alanine aminotransferase-old biomarker and new concept: a review.
Int J Med Sci. 2014 Jun 26;11(9):925-35. doi: 10.7150/ijms.8951. eCollection 2014.
7
Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.
PLoS One. 2014 Mar 19;9(3):e92101. doi: 10.1371/journal.pone.0092101. eCollection 2014.
8
Development of a genetic system for the deep-sea psychrophilic bacterium Pseudoalteromonas sp. SM9913.
Microb Cell Fact. 2014 Jan 22;13(1):13. doi: 10.1186/1475-2859-13-13.
9
KEGG for integration and interpretation of large-scale molecular data sets.
Nucleic Acids Res. 2012 Jan;40(Database issue):D109-14. doi: 10.1093/nar/gkr988. Epub 2011 Nov 10.
10
Regulation and characterization of the dadRAX locus for D-amino acid catabolism in Pseudomonas aeruginosa PAO1.
J Bacteriol. 2011 May;193(9):2107-15. doi: 10.1128/JB.00036-11. Epub 2011 Mar 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验