Laboratório de Biologia em Tripanosomatídeos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Rio de Janeiro, Brasil.
Laboratório de Biologia Parasitária, Universidade Católica Dom Bosco, Campo Grande, Mato Grosso Do Sul, Brasil.
Parasit Vectors. 2023 Jan 23;16(1):26. doi: 10.1186/s13071-022-05616-w.
The study of the ecology of Trypanosoma cruzi is challenging due to its extreme adaptive plasticity, resulting in the parasitism of hundreds of mammal species and dozens of triatomine species. The genetic analysis of blood meal sources (BMS) from the triatomine vector is an accurate and practical approach for gathering information on which wild mammal species participate in a local transmission network. South American coatis, Nasua nasua, act as important reservoir host species of T. cruzi in the Pantanal biome because of their high rate of infection and elevated parasitemia, with the main discrete typing unit (DTU) lineages (TcI and TcII). Moreover, the carnivore coati is the only mammal species to build high arboreal nests for breeding and resting that can be shared by various vertebrate and invertebrate species. Herein, we applied the sensitive and specific methodology of DNA barcoding and molecular cloning to study triatomines found in a coati nest to access the diversity of mammal species that explore this structure, and therefore, may be involved in the parasite transmission network.
Twenty-three Triatoma sordida were collected in one coati's nest in the subregion of Nhecolândia, Pantanal. The DNA isolated from the gut of insects was subjected to BMS detection by PCR using universal primers that flank variable regions of the cytochrome b (cytb) and 12S rDNA mitochondrial genes from vertebrates. The Trypanosoma spp. diagnosis and DTU genotyping were based on an 18S rDNA molecular marker and also using new cytb gene primers designed in this study. Phylogenetic analyses and chord diagrams were constructed to visualize BMS haplotypes, DTU lineages detected on vectors, and their interconnections.
Twenty of 23 triatomines analyzed were PCR-positive (86.95%) showing lineages T. cruzi DTU TcI (n = 2), TcII (n = 6), and a predominance of TcI/TcII (n = 12) mixed infection. Intra-DTU diversity was observed mainly from different TcI haplotypes. Genetic analyses revealed that the southern anteater, Tamandua tetradactyla, was the unique species detected as the BMS of triatomines collected from the coati's nest. At least three different individuals of T. tetradactyla served as BMS of 21/23 bugs studied, as indicated by the cytb and 12S rDNA haplotypes identified.
The identification of multiple BMS, and importantly, different individuals of the same species, was achieved by the methodology applied. The study demonstrated that the southern anteaters can occupy the South American coati's nest, serving as the BMS of T. sordida specimens. Since anteaters have an individualist nonsocial behavior, the three individuals detected as BMS stayed at the coati's nest at different times, which added a temporal character to BMS detection. The TcI and TcII infection, and significantly, a predominance of TcI/TcII mixed infection profile with different TcI and TcII haplotypes was observed, due to the discriminatory capacity of the methodology applied. Tamandua tetradactyla, a host which has been little studied, may have an important role in the T. cruzi transmission in that Pantanal subregion. The data from the present study indicate the sharing of coatis' nests by other mammal species, expanding the possibilities for T. cruzi transmission in the canopy strata. We propose that coatis' nests can act as the true hubs of the T. cruzi transmission web in Pantanal, instead of the coatis themselves, as previously suggested.
由于其极端的适应性可塑性,导致其寄生在数百种哺乳动物物种和数十种三锥虫物种中,因此研究克氏锥虫的生态学具有挑战性。通过对三锥虫媒介的血液来源(BMS)进行基因分析,可以准确、实际地了解哪些野生动物物种参与了当地的传播网络。南美的浣熊,Nasua nasua,由于其高感染率和高寄生虫血症,是潘塔纳尔生物群落中 T. cruzi 的重要储存宿主物种,主要离散型单位(DTU)谱系(TcI 和 TcII)。此外,食肉动物浣熊是唯一一种为繁殖和休息而建造高树栖巢的哺乳动物物种,各种脊椎动物和无脊椎动物物种都可以共享这些巢穴。在此,我们应用 DNA 条形码和分子克隆的敏感和特异性方法研究了浣熊巢中的三锥虫,以了解探索这种结构的哺乳动物物种的多样性,因此可能参与寄生虫传播网络。
在潘塔纳尔的 Nhecolândia 亚区的一只浣熊巢中收集了 23 只 Sordida triatoma。从昆虫肠道中分离出的 DNA 用针对脊椎动物细胞色素 b(cytb)和 12S rDNA 线粒体基因侧翼可变区的通用引物进行 BMS 检测。根据 18S rDNA 分子标记和我们在此研究中设计的新 cytb 基因引物对锥虫属的诊断和 DTU 基因分型进行了检测。构建了系统发育分析和和弦图,以可视化 BMS 单倍型、在媒介中检测到的 DTU 谱系及其相互关系。
分析的 23 只三锥虫中有 20 只是 PCR 阳性(86.95%),显示 T. cruzi DTU TcI(n=2)、TcII(n=6)和 TcI/TcII 混合感染的优势(n=12)。主要观察到 TcI 内的 DTU 多样性。遗传分析表明,南方食蚁兽 Tamandua tetradactyla 是从浣熊巢中采集的三锥虫 BMS 中唯一检测到的物种。至少有三个不同的 T. tetradactyla 个体被鉴定为 cytb 和 12S rDNA 单倍型识别的 23 只虫子中的 BMS。
应用的方法可以实现多种 BMS 的鉴定,更重要的是,可以鉴定同一物种的不同个体。研究表明,南方食蚁兽可以占据南美浣熊的巢穴,成为 Sordida triatoma 标本的 BMS。由于食蚁兽具有个体主义的非社会性行为,因此检测到的三个个体作为 BMS 是在不同时间停留在浣熊的巢中,这为 BMS 的检测增加了时间特征。观察到 TcI 和 TcII 感染,并且由于应用方法的鉴别能力,显著观察到 TcI/TcII 混合感染的优势,以及不同的 TcI 和 TcII 单倍型。研究较少的 Tamandua tetradactyla 可能在潘塔纳尔地区的 T. cruzi 传播中发挥重要作用。本研究的数据表明,其他哺乳动物物种共享浣熊的巢穴,扩大了 T. cruzi 在树冠层传播的可能性。我们提出,浣熊的巢穴可以作为潘塔纳尔 T. cruzi 传播网络的真正枢纽,而不是以前认为的浣熊本身。