CONNECT-AI Research Center, Yonsei University College of Medicine, Yonsei University Health System, Seoul, South Korea.
Department of Cardiology, Catholic Kwandong University International St. Mary's Hospital, Incheon, South Korea.
Clin Cardiol. 2023 Mar;46(3):320-327. doi: 10.1002/clc.23964. Epub 2023 Jan 24.
The recently introduced Bayesian quantile regression (BQR) machine-learning method enables comprehensive analyzing the relationship among complex clinical variables. We analyzed the relationship between multiple cardiovascular (CV) risk factors and different stages of coronary artery disease (CAD) using the BQR model in a vessel-specific manner.
From the data of 1,463 patients obtained from the PARADIGM (NCT02803411) registry, we analyzed the lumen diameter stenosis (DS) of the three vessels: left anterior descending (LAD), left circumflex (LCx), and right coronary artery (RCA). Two models for predicting DS and DS changes were developed. Baseline CV risk factors, symptoms, and laboratory test results were used as the inputs. The conditional 10%, 25%, 50%, 75%, and 90% quantile functions of the maximum DS and DS change of the three vessels were estimated using the BQR model.
The 90th percentiles of the DS of the three vessels and their maximum DS change were 41%-50% and 5.6%-7.3%, respectively. Typical anginal symptoms were associated with the highest quantile (90%) of DS in the LAD; diabetes with higher quantiles (75% and 90%) of DS in the LCx; dyslipidemia with the highest quantile (90%) of DS in the RCA; and shortness of breath showed some association with the LCx and RCA. Interestingly, High-density lipoprotein cholesterol showed a dynamic association along DS change in the per-patient analysis.
This study demonstrates the clinical utility of the BQR model for evaluating the comprehensive relationship between risk factors and baseline-grade CAD and its progression.
最近引入的贝叶斯分位数回归(BQR)机器学习方法能够全面分析复杂临床变量之间的关系。我们以血管特异性的方式使用 BQR 模型分析了多种心血管(CV)危险因素与冠状动脉疾病(CAD)不同阶段之间的关系。
我们分析了从 PARADIGM(NCT02803411)注册数据中获得的 1463 例患者的数据,分析了左前降支(LAD)、左回旋支(LCx)和右冠状动脉(RCA)三支血管的管腔直径狭窄(DS)。建立了两种预测 DS 和 DS 变化的模型。将基线 CV 危险因素、症状和实验室检查结果作为输入。使用 BQR 模型估计三支血管的最大 DS 和 DS 变化的条件 10%、25%、50%、75%和 90%分位数函数。
三支血管的 DS 和最大 DS 变化的第 90 百分位数分别为 41%-50%和 5.6%-7.3%。典型的心绞痛症状与 LAD 中 DS 的最高分位数(90%)相关;糖尿病与 LCx 中 DS 的较高分位数(75%和 90%)相关;血脂异常与 RCA 中 DS 的最高分位数(90%)相关;呼吸急促与 LCx 和 RCA 有一定的相关性。有趣的是,高密度脂蛋白胆固醇在个体患者分析中沿 DS 变化呈现动态关联。
本研究表明,BQR 模型可用于评估危险因素与基线级 CAD 及其进展之间的综合关系,具有临床应用价值。