Suppr超能文献

稳定型胸痛患者阻塞性冠状动脉疾病诊断预测模型的外部有效性:来自 PROMISE 试验的见解。

The External Validity of Prediction Models for the Diagnosis of Obstructive Coronary Artery Disease in Patients With Stable Chest Pain: Insights From the PROMISE Trial.

机构信息

Duke Clinical Research Institute, Duke University School of Medicine, Durham, North Carolina.

Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.

出版信息

JACC Cardiovasc Imaging. 2018 Mar;11(3):437-446. doi: 10.1016/j.jcmg.2017.02.020. Epub 2017 Jun 14.

Abstract

OBJECTIVES

This study sought to externally validate prediction models for the presence of obstructive coronary artery disease (CAD).

BACKGROUND

A better assessment of the probability of CAD may improve the identification of patients who benefit from noninvasive testing.

METHODS

Stable chest pain patients from the PROMISE (Prospective Multicenter Imaging Study for Evaluation of Chest Pain) trial with computed tomography angiography (CTA) or invasive coronary angiography (ICA) were included. The authors assumed that patients with CTA showing 0% stenosis and a coronary artery calcium (CAC) score of 0 were free of obstructive CAD (≥50% stenosis) on ICA, and they multiply imputed missing ICA results based on clinical variables and CTA results. Predicted CAD probabilities were calculated using published coefficients for 3 models: basic model (age, sex, chest pain type), clinical model (basic model + diabetes, hypertension, dyslipidemia, and smoking), and clinical + CAC score model. The authors assessed discrimination and calibration, and compared published effects with observed predictor effects.

RESULTS

In 3,468 patients (1,805 women; mean 60 years of age; 779 [23%] with obstructive CAD on CTA), the models demonstrated moderate-good discrimination, with C-statistics of 0.69 (95% confidence interval [CI]: 0.67 to 0.72), 0.72 (95% CI: 0.69 to 0.74), and 0.86 (95% CI: 0.85 to 0.88) for the basic, clinical, and clinical + CAC score models, respectively. Calibration was satisfactory although typical chest pain and diabetes were less predictive and CAC score was more predictive than was suggested by the models. Among the 31% of patients for whom the clinical model predicted a low (≤10%) probability of CAD, actual prevalence was 7%; among the 48% for whom the clinical + CAC score model predicted a low probability the observed prevalence was 2%. In 2 sensitivity analyses excluding imputed data, similar results were obtained using CTA as the outcome, whereas in those who underwent ICA the models significantly underestimated CAD probability.

CONCLUSIONS

Existing clinical prediction models can identify patients with a low probability of obstructive CAD. Obstructive CAD on ICA was imputed for 61% of patients; hence, further validation is necessary.

摘要

目的

本研究旨在对外科冠状动脉疾病(CAD)存在的预测模型进行验证。

背景

更好地评估 CAD 的可能性可以提高识别受益于非侵入性检查的患者的能力。

方法

纳入来自 PROMISE(前瞻性多中心成像研究评估胸痛)试验的稳定胸痛患者,进行计算机断层血管造影(CTA)或冠状动脉造影(ICA)检查。作者假设 CTA 显示 0%狭窄且冠状动脉钙(CAC)评分 0 的患者在 ICA 上无阻塞性 CAD(≥50%狭窄),并根据临床变量和 CTA 结果对缺失的 ICA 结果进行多重插补。使用 3 个模型的发表系数计算预测 CAD 的概率:基本模型(年龄、性别、胸痛类型)、临床模型(基本模型+糖尿病、高血压、血脂异常和吸烟)和临床+CAC 评分模型。作者评估了判别能力和校准情况,并比较了发表的预测因素效应与观察到的预测因素效应。

结果

在 3468 名患者(1805 名女性;平均年龄 60 岁;779 名患者(23%)CTA 显示有阻塞性 CAD)中,这些模型表现出中度至良好的判别能力,C 统计量分别为 0.69(95%置信区间[CI]:0.67 至 0.72)、0.72(95% CI:0.69 至 0.74)和 0.86(95% CI:0.85 至 0.88),基本、临床和临床+CAC 评分模型。虽然典型胸痛和糖尿病的预测性较差,而 CAC 评分的预测性较强,但校准情况令人满意。在临床模型预测 CAD 概率较低(≤10%)的 31%的患者中,实际患病率为 7%;在临床+CAC 评分模型预测低概率的 48%的患者中,观察到的患病率为 2%。在排除插补数据的 2 项敏感性分析中,使用 CTA 作为结局,也得到了相似的结果,而在接受 ICA 的患者中,模型显著低估了 CAD 的概率。

结论

现有的临床预测模型可以识别出 CAD 概率较低的患者。ICA 上的阻塞性 CAD 被插补了 61%的患者,因此需要进一步验证。

相似文献

10
Predictive Model for High-Risk Coronary Artery Disease.高危冠状动脉疾病预测模型。
Circ Cardiovasc Imaging. 2019 Feb;12(2):e007940. doi: 10.1161/CIRCIMAGING.118.007940.

引用本文的文献

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验