Department of Medicine, Division of Gastroenterology and Hepatology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
Department of Medical Microbiology & Immunology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA.
Infect Immun. 2023 Feb 16;91(2):e0057022. doi: 10.1128/iai.00570-22. Epub 2023 Jan 24.
A disrupted "dysbiotic" gut microbiome engenders susceptibility to the diarrheal pathogen Clostridioides difficile by impacting the metabolic milieu of the gut. Diet, in particular the microbiota-accessible carbohydrates (MACs) found in dietary fiber, is one of the most powerful ways to affect the composition and metabolic output of the gut microbiome. As such, diet is a powerful tool for understanding the biology of C. difficile and for developing alternative approaches for coping with this pathogen. One prominent class of metabolites produced by the gut microbiome is short-chain fatty acids (SCFAs), the major metabolic end products of MAC metabolism. SCFAs are known to decrease the fitness of C. difficile , and high intestinal SCFA concentrations are associated with reduced fitness of C. difficile in animal models of C. difficile infection (CDI). Here, we use controlled dietary conditions (8 diets that differ only by MAC composition) to show that C. difficile fitness is most consistently impacted by butyrate, rather than the other two prominent SCFAs (acetate and propionate), during murine model CDI. We similarly show that butyrate concentrations are lower in fecal samples from humans with CDI than in those from healthy controls. Finally, we demonstrate that butyrate impacts growth in diverse C. difficile isolates. These findings provide a foundation for future work which will dissect how butyrate directly impacts C. difficile fitness and will lead to the development of diverse approaches distinct from antibiotics or fecal transplant, such as dietary interventions, for mitigating CDI in at-risk human populations. Clostridioides difficile is a leading cause of infectious diarrhea in humans, and it imposes a tremendous burden on the health care system. Current treatments for C. difficile infection (CDI) include antibiotics and fecal microbiota transplant, which contribute to recurrent CDIs and face major regulatory hurdles, respectively. Therefore, there is an ongoing need to develop new ways to cope with CDI. Notably, a disrupted "dysbiotic" gut microbiota is the primary risk factor for CDI, but we incompletely understand how a healthy microbiota resists CDI. Here, we show that a specific molecule produced by the gut microbiota, butyrate, is negatively associated with C. difficile burdens in humans and in a mouse model of CDI and that butyrate impedes the growth of diverse C. difficile strains in pure culture. These findings help to build a foundation for designing alternative, possibly diet-based, strategies for mitigating CDI in humans.
肠道微生物组的紊乱(“失调”)会影响肠道的代谢环境,从而使机体易感染腹泻病原体艰难梭菌。饮食,尤其是膳食纤维中存在的微生物可利用碳水化合物(MAC),是影响肠道微生物组组成和代谢产物的最有效方法之一。因此,饮食是了解艰难梭菌生物学特性和开发应对这种病原体的替代方法的有力工具。肠道微生物组产生的一类突出代谢产物是短链脂肪酸(SCFAs),是 MAC 代谢的主要代谢终产物。已知 SCFAs 可降低艰难梭菌的适应性,而在艰难梭菌感染(CDI)的动物模型中,高肠道 SCFA 浓度与艰难梭菌适应性降低有关。在这里,我们使用控制饮食条件(8 种饮食仅在 MAC 组成上有所不同)表明,在 CDI 小鼠模型中,丁酸而不是另外两种主要的 SCFAs(乙酸盐和丙酸盐)最一致地影响艰难梭菌的适应性。我们同样表明,CDI 患者粪便样本中的丁酸浓度低于健康对照者。最后,我们证明丁酸会影响不同艰难梭菌分离株的生长。这些发现为进一步研究奠定了基础,这些研究将阐明丁酸如何直接影响艰难梭菌的适应性,并为开发抗生素或粪便移植以外的不同方法提供依据,例如饮食干预,以减轻高危人群的 CDI。艰难梭菌是人类感染性腹泻的主要病原体,它给医疗保健系统带来了巨大负担。目前治疗艰难梭菌感染(CDI)的方法包括抗生素和粪便微生物移植,这分别导致 CDI 的复发和面临重大监管障碍。因此,需要不断开发应对 CDI 的新方法。值得注意的是,紊乱的“失调”肠道微生物群是 CDI 的主要危险因素,但我们不完全了解健康的微生物群如何抵抗 CDI。在这里,我们表明,肠道微生物群产生的一种特定分子,丁酸,与人类和 CDI 小鼠模型中的艰难梭菌负担呈负相关,并且丁酸会阻碍多种艰难梭菌菌株在纯培养中的生长。这些发现有助于为设计减轻人类 CDI 的替代策略(可能基于饮食)奠定基础。
Nat Microbiol. 2018-4-23
PLoS Pathog. 2021-10
J Bacteriol. 2023-9-26
mBio. 2025-8-13
J Infect Dis. 2025-7-11
Cell Host Microbe. 2025-3-12
Adv Sci (Weinh). 2025-4
J Bacteriol. 2025-2-20
NPJ Biofilms Microbiomes. 2022-4-1
J Hum Nutr Diet. 2022-4
Nucleic Acids Res. 2022-1-7
PLoS Pathog. 2021-10
Cell Host Microbe. 2021-11-10