Herman Kristina M, Aprà Edoardo, Xantheas Sotiris S
Department of Chemistry, University of Washington, Seattle, WA 98195, USA.
Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, P.O. Box 999, Richland, Washington 99352, USA.
Phys Chem Chem Phys. 2023 Feb 8;25(6):4824-4838. doi: 10.1039/d2cp04335a.
We have established CCSD(T)/CBS (Complete Basis Set) limits for 3 stationary points on the benzene dimer potential energy surface, corresponding to the π⋯π (parallel displaced or PD(), minimum) and CH⋯π (T-shaped or T(), transition state) and tilted T-shaped (or TT(), minimum) bonding scenarios considering both the structure and binding energy. The CCSD(T)/CBS binding energies are -2.65 ± 0.02 (PD), -2.74 ± 0.03 (T), and -2.83 ± 0.01 kcal mol (TT). To this end, the CH⋯π is ∼0.2 kcal mol stronger than the π⋯π interaction, whereas the tilting of the CH donating benzene molecule with respect to the other benzene is worth 0.1 kcal mol. As previously discussed in the literature, the MP2 level of theory does not provide a close match for either the energy or structure, yet the SCS-MP2 yields structures in excellent agreement with respect to the CCSD(T) result. It is found that the SCS-MI-MP2 also gives optimized structures very close to SCS-MP2 (within ∼0.01 Å of the benchmark). Despite the closer match in structure, the spin-biased MP2 methods (SCS-, SCS-MI-, and SOS-MP2) incorrectly predict the relative stabilities of the isomers. That said, none of the spin biased MP2 methods offers a good compromise between energy and structure for the systems examined. Finally, the CCSD(T)/CBS benchmarks were used to assess the performance of 13 DFT functionals selected from different rungs of Jacob's ladder. Several functionals such as TPSS-D3, B3LYP-D3, B97-D, B97-D3, and B2PLYP-D3 provided a good description of the binding energies for both CH⋯π and π⋯π interactions, yielding values within 6% of the CCSD(T)/CBS benchmark values. Unlike the MP2 methods, these functionals correctly predict the relative stability of the PD() and T() dimers. Further, we find that there is no systematic improvement as Jacob's ladder is ascended (increased complexity of functional). The best functionals that result in a good compromise between structure and energy accuracy are B97-D3 and B2PLYP-D3 for both the CH⋯π and π⋯π interaction. Despite the impressive performance of these functionals, a challenge that remains is ensuring the transferability of these density functionals in accurately describing the interaction between dimers of larger aromatic molecules, the latter requiring high-level benchmarks for these systems.
我们已经确定了苯二聚体势能面上3个驻点的CCSD(T)/CBS(完全基组)极限,这3个驻点分别对应于π⋯π(平行位移或PD(),最小值)、CH⋯π(T形或T(),过渡态)以及倾斜T形(或TT(),最小值)的键合情况,同时考虑了结构和结合能。CCSD(T)/CBS结合能分别为-2.65±0.02(PD)、-2.74±0.03(T)和-2.83±0.01千卡/摩尔(TT)。为此,CH⋯π相互作用比π⋯π相互作用强约0.2千卡/摩尔,而供氢CH的苯分子相对于另一个苯分子的倾斜作用值为0.1千卡/摩尔。如文献中先前所述,MP2理论水平对于能量或结构都不能提供很好的匹配,但SCS-MP2给出的结构与CCSD(T)结果非常吻合。研究发现,SCS-MI-MP2给出的优化结构也与SCS-MP2非常接近(在基准值的约0.01 Å范围内)。尽管在结构上匹配度更高,但自旋偏置的MP2方法(SCS-、SCS-MI-和SOS-MP2)错误地预测了异构体的相对稳定性。也就是说,对于所研究的体系,没有一种自旋偏置的MP2方法能在能量和结构之间实现良好的折衷。最后,CCSD(T)/CBS基准用于评估从雅各布天梯不同梯级中选出的13种DFT泛函的性能。几种泛函,如TPSS-D3、B3LYP-D3、B97-D、B97-D3和B2PLYP-D3,对CH⋯π和π⋯π相互作用的结合能都给出了很好的描述,得到的值在CCSD(T)/CBS基准值的6%以内。与MP2方法不同,这些泛函正确地预测了PD()和T()二聚体的相对稳定性。此外,我们发现随着雅各布天梯上升(泛函复杂度增加)并没有系统的改进。对于CH⋯π和π⋯π相互作用,在结构和能量精度之间实现良好折衷的最佳泛函是B97-D3和B2PLYP-D3。尽管这些泛函表现出色,但仍然存在的一个挑战是确保这些密度泛函在准确描述更大芳香分子二聚体之间相互作用时的可转移性,而这需要针对这些体系的高水平基准。